High selectivity framework polymer membranes chemically tuned towards fast anion conduction

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-04-06 DOI:10.1038/s41467-025-58638-0
Junkai Fang, Guozhen Zhang, Marc-Antoni Goulet, Peipei Zuo, Yu Zhou, Hui Li, Jun Jiang, Michael D. Guiver, Zhengjin Yang, Tongwen Xu
{"title":"High selectivity framework polymer membranes chemically tuned towards fast anion conduction","authors":"Junkai Fang, Guozhen Zhang, Marc-Antoni Goulet, Peipei Zuo, Yu Zhou, Hui Li, Jun Jiang, Michael D. Guiver, Zhengjin Yang, Tongwen Xu","doi":"10.1038/s41467-025-58638-0","DOIUrl":null,"url":null,"abstract":"<p>Studying ion transport in the interaction confinement regime has important implications for membrane design and advanced electrochemical devices. A key example is the rapid-charging capability of aqueous organic redox flow batteries, enabled by near-frictionless Na<sup>+</sup>/K<sup>+</sup> transport within triazine framework membranes. However, achieving similar breakthroughs for devices using anions (<i>e.g.</i>, Cl<sup>-</sup>) is challenging due to the suppression of anion transport under confinement, known as the charge asymmetry effect. We present a series of anion-selective covalent triazine framework membranes with comparable densities of subnanometer ion transport channels and identical micropore size distributions, which help to overcome the charge asymmetry effect and promote fast anion conduction. We demonstrate that regulating the charge distribution in the membrane frameworks reduces the energy barrier for anion transport, resulting in nearly doubled Cl<sup>-</sup> conductivity and adding almost no additional energy barrier for F<sup>-</sup> transport. This membrane enables an aqueous organic redox flow battery using Cl<sup>-</sup> ions to operate at high current densities, exceeding battery performance demonstrated by current membranes. These findings could benefit various electrochemical devices and inspire single-species selectivity in separation membranes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58638-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Studying ion transport in the interaction confinement regime has important implications for membrane design and advanced electrochemical devices. A key example is the rapid-charging capability of aqueous organic redox flow batteries, enabled by near-frictionless Na+/K+ transport within triazine framework membranes. However, achieving similar breakthroughs for devices using anions (e.g., Cl-) is challenging due to the suppression of anion transport under confinement, known as the charge asymmetry effect. We present a series of anion-selective covalent triazine framework membranes with comparable densities of subnanometer ion transport channels and identical micropore size distributions, which help to overcome the charge asymmetry effect and promote fast anion conduction. We demonstrate that regulating the charge distribution in the membrane frameworks reduces the energy barrier for anion transport, resulting in nearly doubled Cl- conductivity and adding almost no additional energy barrier for F- transport. This membrane enables an aqueous organic redox flow battery using Cl- ions to operate at high current densities, exceeding battery performance demonstrated by current membranes. These findings could benefit various electrochemical devices and inspire single-species selectivity in separation membranes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高选择性框架聚合物膜的化学调谐,以快速阴离子传导
研究离子在相互作用约束下的输运对膜设计和先进的电化学装置具有重要意义。一个关键的例子是水性有机氧化还原液流电池的快速充电能力,通过在三嗪框架膜内近乎无摩擦的Na+/K+传输实现。然而,对于使用阴离子(例如Cl-)的设备实现类似的突破是具有挑战性的,因为阴离子在限制下的传输受到抑制,称为电荷不对称效应。我们提出了一系列阴离子选择性共价三嗪框架膜,具有相似的亚纳米离子传输通道密度和相同的微孔大小分布,有助于克服电荷不对称效应,促进阴离子的快速传导。我们证明,调节膜框架中的电荷分布降低了阴离子传输的能量屏障,导致Cl-电导率几乎增加了一倍,而F-传输几乎没有增加额外的能量屏障。该膜使使用Cl离子的水相有机氧化还原液流电池能够在高电流密度下工作,超过当前膜所展示的电池性能。这些发现可以为各种电化学装置提供帮助,并激发分离膜的单物种选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Breaking dense integration limits: inverse-designed lithium niobate multimode photonic circuits. Wearable AI for on-device frailty assessment. Simple electronegativity-based model for predicting formation of stable compounds across the periodic table. Identifying grain boundary and intragranular pinning centres in Sm2(Co,Fe,Cu,Zr)17 permanent magnets to guide performance optimisation. Mapping risks of health conditions in people with atopic eczema in English primary care and hospital data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1