Dual-View Structural Similarity Subspace Clustering for Hyperspectral Band Selection

Dongkai Yan;Xudong Sun;Jiahua Zhang;Xiaodi Shang
{"title":"Dual-View Structural Similarity Subspace Clustering for Hyperspectral Band Selection","authors":"Dongkai Yan;Xudong Sun;Jiahua Zhang;Xiaodi Shang","doi":"10.1109/LGRS.2025.3554356","DOIUrl":null,"url":null,"abstract":"Band selection (BS) is a vital technique for improving efficiency of hyperspectral image (HSI) processing. This letter proposes a dual-view structural similarity subspace clustering model (DVS3C) for BS. Traditional low-rank subspace clustering (LRSC) methods rely solely on single-view data (e.g., original HSI), potentially leading to the loss of critical information (e.g., spatial structures) and insufficient exploitation of the multi-dimensional features of HSI for optimal BS. To do so, DVS3C constructs a spatial view alongside the spectral view, leveraging global spectral-spatial information through subspace clustering to achieve complementary advantages between views. Besides, to overcome LRSC’s limitations in capturing band local structure, DVS3C introduces a structural similarity matrix to deeply exploit intraview neighborhood relationships of bands, further reducing band redundancy. Ultimately, an adaptive dual-view fusion strategy that iteratively optimizes a consensus matrix while dynamically adjusting the contribution of each view is designed to ensure view consistency. Experimental results on four public datasets demonstrate its remarkable stability and superiority. The source code is available at <uri>https://github.com/ydk0912/DVS3C</uri>.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938204/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Band selection (BS) is a vital technique for improving efficiency of hyperspectral image (HSI) processing. This letter proposes a dual-view structural similarity subspace clustering model (DVS3C) for BS. Traditional low-rank subspace clustering (LRSC) methods rely solely on single-view data (e.g., original HSI), potentially leading to the loss of critical information (e.g., spatial structures) and insufficient exploitation of the multi-dimensional features of HSI for optimal BS. To do so, DVS3C constructs a spatial view alongside the spectral view, leveraging global spectral-spatial information through subspace clustering to achieve complementary advantages between views. Besides, to overcome LRSC’s limitations in capturing band local structure, DVS3C introduces a structural similarity matrix to deeply exploit intraview neighborhood relationships of bands, further reducing band redundancy. Ultimately, an adaptive dual-view fusion strategy that iteratively optimizes a consensus matrix while dynamically adjusting the contribution of each view is designed to ensure view consistency. Experimental results on four public datasets demonstrate its remarkable stability and superiority. The source code is available at https://github.com/ydk0912/DVS3C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高光谱波段选择的双视图结构相似子空间聚类
波段选择是提高高光谱图像处理效率的一项重要技术。本文提出了一种双视图结构相似子空间聚类模型(DVS3C)。传统的低秩子空间聚类(LRSC)方法仅依赖于单视图数据(如原始HSI),可能导致关键信息(如空间结构)的丢失,并且无法充分利用HSI的多维特征来优化BS。为此,DVS3C与光谱视图一起构建空间视图,通过子空间聚类利用全局光谱空间信息,实现视图间优势互补。此外,为了克服LRSC在捕获频带局部结构方面的局限性,DVS3C引入了结构相似矩阵,深度挖掘频带内邻域关系,进一步降低了频带冗余度。最后,设计了一种自适应双视图融合策略,迭代优化共识矩阵,同时动态调整每个视图的贡献,以确保视图一致性。在四个公共数据集上的实验结果表明,该方法具有显著的稳定性和优越性。源代码可从https://github.com/ydk0912/DVS3C获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Incorporating Stratal Dip to Constrain the Integration Range of Marchenko Imaging Weakly Supervised Semantic Segmentation of Remote Sensing Scenes With Cross-Image Class Token Constraints fKAN-UNet: Lightweight Road Segmentation With Fractional Spectral Modeling and Directional Convolutions MDAFNet: Multiscale Differential Edge and Adaptive Frequency Guided Network for Infrared Small Target Detection MSA-GAN: Multistructure Adaptive Generative Adversarial Network for Semi-Supervised Remote Sensing Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1