Study of Hybrid Machine Learning Multiaxial Low-Cycle Fatigue Life Prediction Model of CP-Ti

IF 3.2 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2025-02-24 DOI:10.1111/ffe.14604
Tian-Hao Ma, Wei Zhang, Le Chang, Jian-Ping Zhao, Chang-Yu Zhou
{"title":"Study of Hybrid Machine Learning Multiaxial Low-Cycle Fatigue Life Prediction Model of CP-Ti","authors":"Tian-Hao Ma,&nbsp;Wei Zhang,&nbsp;Le Chang,&nbsp;Jian-Ping Zhao,&nbsp;Chang-Yu Zhou","doi":"10.1111/ffe.14604","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Symmetric and asymmetric multiaxial low-cycle fatigue tests were conducted on commercially pure titanium under different control modes and multiaxial strain/stress ratios to establish a reliable hybrid physics and data-driven method. Optimized analysis formula–based models are proposed to provide reliable physical information first. Based on the dataset enhanced by the nonlinear variational autoencoder method, a hybrid VAE-ANN model is established and trained, developed using the Pearson correlation coefficient analysis and Leaky ReLU activation function. Through a series of fatigue life prediction validations under both symmetric and asymmetric loading conditions, the VAE-ANN model demonstrates excellent prediction accuracy, broad generalization capability, and strong compatibility, achieving the lowest average absolute relative error of 6.76% under symmetric and 22.61% under asymmetric loading conditions.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 5","pages":"2309-2324"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14604","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric and asymmetric multiaxial low-cycle fatigue tests were conducted on commercially pure titanium under different control modes and multiaxial strain/stress ratios to establish a reliable hybrid physics and data-driven method. Optimized analysis formula–based models are proposed to provide reliable physical information first. Based on the dataset enhanced by the nonlinear variational autoencoder method, a hybrid VAE-ANN model is established and trained, developed using the Pearson correlation coefficient analysis and Leaky ReLU activation function. Through a series of fatigue life prediction validations under both symmetric and asymmetric loading conditions, the VAE-ANN model demonstrates excellent prediction accuracy, broad generalization capability, and strong compatibility, achieving the lowest average absolute relative error of 6.76% under symmetric and 22.61% under asymmetric loading conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合机器学习CP-Ti多轴低周疲劳寿命预测模型研究
在不同控制模式和多轴应变/应力比下,对商业纯钛进行了对称和非对称多轴低周疲劳试验,建立了可靠的混合物理和数据驱动方法。提出了基于优化分析公式的模型,首先提供可靠的物理信息。基于非线性变分自编码器方法增强的数据集,利用Pearson相关系数分析和Leaky ReLU激活函数,建立并训练了一个混合的VAE-ANN模型。通过对称和非对称载荷条件下的疲劳寿命预测验证,该模型具有较好的预测精度、较广的泛化能力和较强的兼容性,在对称和非对称载荷条件下的平均绝对相对误差最低,分别为6.76%和22.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Issue Information Microstructural Evolution and Crack Initiation Behavior During HCF in a New Weathering Bridge Composite Plate: 316L/Q420qENH With Smooth and Notched Specimens Dynamic Fracture Analysis of Moving Mode I Collinear Cracks in Monoclinic Crystalline Strip: An Analytical Approach Using Hilbert Transform Fatigue Life Prediction of Powertrain Rubber Suspension Bushings Based on Multiple Damage Parameters Under Thermo-Mechanical Coupling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1