Implicit Image-to-Image Schrödinger Bridge for image restoration

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2025-04-04 DOI:10.1016/j.patcog.2025.111627
Yuang Wang , Siyeop Yoon , Pengfei Jin , Matthew Tivnan , Sifan Song , Zhennong Chen , Rui Hu , Li Zhang , Quanzheng Li , Zhiqiang Chen , Dufan Wu
{"title":"Implicit Image-to-Image Schrödinger Bridge for image restoration","authors":"Yuang Wang ,&nbsp;Siyeop Yoon ,&nbsp;Pengfei Jin ,&nbsp;Matthew Tivnan ,&nbsp;Sifan Song ,&nbsp;Zhennong Chen ,&nbsp;Rui Hu ,&nbsp;Li Zhang ,&nbsp;Quanzheng Li ,&nbsp;Zhiqiang Chen ,&nbsp;Dufan Wu","doi":"10.1016/j.patcog.2025.111627","DOIUrl":null,"url":null,"abstract":"<div><div>Diffusion-based models have demonstrated remarkable effectiveness in image restoration tasks; however, their iterative denoising process, which starts from Gaussian noise, often leads to slow inference speeds. The Image-to-Image Schrödinger Bridge (I<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>SB) offers a promising alternative by initializing the generative process from corrupted images while leveraging training techniques from score-based diffusion models. In this paper, we introduce the Implicit Image-to-Image Schrödinger Bridge (I<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>SB) to further accelerate the generative process of I<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>SB. I<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>SB restructures the generative process into a non-Markovian framework by incorporating the initial corrupted image at each generative step, effectively preserving and utilizing its information. To enable direct use of pretrained I<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>SB models without additional training, we ensure consistency in marginal distributions. Extensive experiments across many image corruptions—including noise, low resolution, JPEG compression, and sparse sampling—and multiple image modalities—such as natural, human face, and medical images— demonstrate the acceleration benefits of I<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>SB. Compared to I<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>SB, I<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span>SB achieves the same perceptual quality with fewer generative steps, while maintaining or improving fidelity to the ground truth.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"165 ","pages":"Article 111627"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325002870","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion-based models have demonstrated remarkable effectiveness in image restoration tasks; however, their iterative denoising process, which starts from Gaussian noise, often leads to slow inference speeds. The Image-to-Image Schrödinger Bridge (I2SB) offers a promising alternative by initializing the generative process from corrupted images while leveraging training techniques from score-based diffusion models. In this paper, we introduce the Implicit Image-to-Image Schrödinger Bridge (I3SB) to further accelerate the generative process of I2SB. I3SB restructures the generative process into a non-Markovian framework by incorporating the initial corrupted image at each generative step, effectively preserving and utilizing its information. To enable direct use of pretrained I2SB models without additional training, we ensure consistency in marginal distributions. Extensive experiments across many image corruptions—including noise, low resolution, JPEG compression, and sparse sampling—and multiple image modalities—such as natural, human face, and medical images— demonstrate the acceleration benefits of I3SB. Compared to I2SB, I3SB achieves the same perceptual quality with fewer generative steps, while maintaining or improving fidelity to the ground truth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隐式图像到图像Schrödinger桥梁图像恢复
基于扩散的模型在图像恢复任务中表现出显著的有效性;然而,它们的迭代去噪过程,从高斯噪声开始,往往导致缓慢的推理速度。Image-to-Image Schrödinger Bridge (I2SB)提供了一个很有前途的替代方案,它从损坏的图像初始化生成过程,同时利用基于分数的扩散模型的训练技术。在本文中,我们引入隐式图像到图像Schrödinger桥(I3SB)来进一步加速I2SB的生成过程。I3SB通过在每个生成步骤中合并初始损坏图像,有效地保留和利用其信息,将生成过程重构为非马尔可夫框架。为了能够在没有额外训练的情况下直接使用预训练的I2SB模型,我们确保了边际分布的一致性。在许多图像损坏(包括噪声、低分辨率、JPEG压缩和稀疏采样)和多种图像模式(如自然图像、人脸图像和医学图像)上进行的大量实验证明了I3SB的加速优势。与I2SB相比,I3SB以更少的生成步骤实现了相同的感知质量,同时保持或提高了对地面事实的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
Discussion on “Interpretable medical deep framework by logits-constraint attention guiding graph-based multi-scale fusion for Alzheimer’s disease analysis” by J. Xu, C. Yuan, X. Ma, H. Shang, X. Shi & X. Zhu. (Pattern Recognition, vol. 152, 2024”) 3D temporal-spatial convolutional LSTM network for assessing drug addiction treatment Pairwise joint symmetric uncertainty based on macro-neighborhood entropy for heterogeneous feature selection Low-rank fused modality assisted magnetic resonance imaging reconstruction via an anatomical variation adaptive transformer LCF3D: A robust and real-time late-cascade fusion framework for 3D object detection in autonomous driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1