In Vitro and In Vivo Photothermal and Photoacoustic Activities of Polymeric Nanoparticles Loaded with Nickel, Palladium, and Platinum-Bis(dithiolene) Complexes
{"title":"In Vitro and In Vivo Photothermal and Photoacoustic Activities of Polymeric Nanoparticles Loaded with Nickel, Palladium, and Platinum-Bis(dithiolene) Complexes","authors":"Jean-Baptiste Pluta, Lamiaa M. A. Ali, Romain Guechaichia, Victorien Massé, Thiviya Parthipan, Nathalie Bellec, Sandrine Cammas-Marion, Francois Varray, Christophe Nguyen, Magali Gary-Bobo, Franck Camerel","doi":"10.1002/cmdc.202500121","DOIUrl":null,"url":null,"abstract":"<p>The development of nanosystems with enhanced photothermal and photoacoustic properties is crucial for advancing theranostic applications in cancer therapy. This study explores polymeric nanoparticles (NPs) constituted by a biocompatible poly(ethylene glycol)-block-poly(benzyl malate) copolymer and loaded with metal-bis(dithiolene) complexes (M = Ni, Pd, Pt). These NPs, prepared via a robust nanoprecipitation method, demonstrate uniform morphology, efficient encapsulation (≈70%), and tailored near-infrared (NIR) optical absorption properties. Photothermal and photoacoustic evaluations reveal superior performance of palladium-loaded NPs, offering high contrast for imaging and significant temperature increases under NIR laser irradiation. Cytotoxicity assays confirm their nontoxicity without laser exposure, while effective cancer cell eradication is achieved upon irradiation at power densities ≥2 W cm<sup>−2</sup>. In vivo experiments on zebrafish embryos bearing human cancer xenografts show significant tumor size reduction (20%) post–treatment with palladium-loaded NPs under 880 nm laser irradiation. These findings underscore that metal-bis(dithiolene)-loaded NPs can be versatile agents for combined diagnostics and photothermal therapy, paving the way for further optimization and clinical translation.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":"20 12","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmdc.202500121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmdc.202500121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of nanosystems with enhanced photothermal and photoacoustic properties is crucial for advancing theranostic applications in cancer therapy. This study explores polymeric nanoparticles (NPs) constituted by a biocompatible poly(ethylene glycol)-block-poly(benzyl malate) copolymer and loaded with metal-bis(dithiolene) complexes (M = Ni, Pd, Pt). These NPs, prepared via a robust nanoprecipitation method, demonstrate uniform morphology, efficient encapsulation (≈70%), and tailored near-infrared (NIR) optical absorption properties. Photothermal and photoacoustic evaluations reveal superior performance of palladium-loaded NPs, offering high contrast for imaging and significant temperature increases under NIR laser irradiation. Cytotoxicity assays confirm their nontoxicity without laser exposure, while effective cancer cell eradication is achieved upon irradiation at power densities ≥2 W cm−2. In vivo experiments on zebrafish embryos bearing human cancer xenografts show significant tumor size reduction (20%) post–treatment with palladium-loaded NPs under 880 nm laser irradiation. These findings underscore that metal-bis(dithiolene)-loaded NPs can be versatile agents for combined diagnostics and photothermal therapy, paving the way for further optimization and clinical translation.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.