Simplifying software compliance: AI technologies in drafting technical documentation for the AI Act.

IF 3.6 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING Empirical Software Engineering Pub Date : 2025-01-01 Epub Date: 2025-04-02 DOI:10.1007/s10664-025-10645-x
Francesco Sovrano, Emmie Hine, Stefano Anzolut, Alberto Bacchelli
{"title":"Simplifying software compliance: AI technologies in drafting technical documentation for the AI Act.","authors":"Francesco Sovrano, Emmie Hine, Stefano Anzolut, Alberto Bacchelli","doi":"10.1007/s10664-025-10645-x","DOIUrl":null,"url":null,"abstract":"<p><p>The European AI Act has introduced specific technical documentation requirements for AI systems. Compliance with them is challenging due to the need for advanced knowledge of both legal and technical aspects, which is rare among software developers and legal professionals. Consequently, small and medium-sized enterprises may face high costs in meeting these requirements. In this study, we explore how contemporary AI technologies, including ChatGPT and an existing compliance tool (DoXpert), can aid software developers in creating technical documentation that complies with the AI Act. We specifically demonstrate how these AI tools can identify gaps in existing documentation according to the provisions of the AI Act. Using open-source high-risk AI systems as case studies, we collaborated with legal experts to evaluate how closely tool-generated assessments align with expert opinions. Findings show partial alignment, important issues with ChatGPT (3.5 and 4), and a moderate (and statistically significant) correlation between DoXpert and expert judgments, according to the Rank Biserial Correlation analysis. Nonetheless, these findings underscore the potential of AI to combine with human analysis and alleviate the compliance burden, supporting the broader goal of fostering responsible and transparent AI development under emerging regulatory frameworks.</p>","PeriodicalId":11525,"journal":{"name":"Empirical Software Engineering","volume":"30 3","pages":"91"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Empirical Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10664-025-10645-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The European AI Act has introduced specific technical documentation requirements for AI systems. Compliance with them is challenging due to the need for advanced knowledge of both legal and technical aspects, which is rare among software developers and legal professionals. Consequently, small and medium-sized enterprises may face high costs in meeting these requirements. In this study, we explore how contemporary AI technologies, including ChatGPT and an existing compliance tool (DoXpert), can aid software developers in creating technical documentation that complies with the AI Act. We specifically demonstrate how these AI tools can identify gaps in existing documentation according to the provisions of the AI Act. Using open-source high-risk AI systems as case studies, we collaborated with legal experts to evaluate how closely tool-generated assessments align with expert opinions. Findings show partial alignment, important issues with ChatGPT (3.5 and 4), and a moderate (and statistically significant) correlation between DoXpert and expert judgments, according to the Rank Biserial Correlation analysis. Nonetheless, these findings underscore the potential of AI to combine with human analysis and alleviate the compliance burden, supporting the broader goal of fostering responsible and transparent AI development under emerging regulatory frameworks.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简化软件遵从性:AI法案技术文档起草中的AI技术。
《欧洲人工智能法案》对人工智能系统提出了具体的技术文档要求。遵守它们是具有挑战性的,因为需要法律和技术方面的高级知识,这在软件开发人员和法律专业人员中很少见。因此,中小型企业在满足这些要求时可能面临较高的成本。在本研究中,我们探讨了当代人工智能技术,包括ChatGPT和现有的合规工具(DoXpert),如何帮助软件开发人员创建符合人工智能法案的技术文档。我们具体展示了这些人工智能工具如何根据《人工智能法案》的规定识别现有文档中的空白。使用开源高风险人工智能系统作为案例研究,我们与法律专家合作,评估工具生成的评估与专家意见的一致程度。调查结果显示部分对齐,ChatGPT(3.5和4)的重要问题,以及DoXpert和专家判断之间的适度(和统计显著)相关性,根据秩双列相关分析。尽管如此,这些发现强调了人工智能与人类分析相结合并减轻合规负担的潜力,支持在新兴监管框架下促进负责任和透明的人工智能发展的更广泛目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Empirical Software Engineering
Empirical Software Engineering 工程技术-计算机:软件工程
CiteScore
8.50
自引率
12.20%
发文量
169
审稿时长
>12 weeks
期刊介绍: Empirical Software Engineering provides a forum for applied software engineering research with a strong empirical component, and a venue for publishing empirical results relevant to both researchers and practitioners. Empirical studies presented here usually involve the collection and analysis of data and experience that can be used to characterize, evaluate and reveal relationships between software development deliverables, practices, and technologies. Over time, it is expected that such empirical results will form a body of knowledge leading to widely accepted and well-formed theories. The journal also offers industrial experience reports detailing the application of software technologies - processes, methods, or tools - and their effectiveness in industrial settings. Empirical Software Engineering promotes the publication of industry-relevant research, to address the significant gap between research and practice.
期刊最新文献
Tools and benchmarks evolve: what is their impact on parameter tuning in SBSE experiments? The effect of data complexity on classifier performance. Reinforcement learning for online testing of autonomous driving systems: a replication and extension study. Understanding security tactics in microservice APIs using annotated software architecture decomposition models - a controlled experiment. Assessing the adoption of security policies by developers in terraform across different cloud providers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1