Sonochemically activated room temperature hydrosilylation of silicon nanoparticles †

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Advances Pub Date : 2025-04-04 DOI:10.1039/D4NA01067A
Jonathan Trach, Shawna Williams, Brendan Michalczyk, Cole Butler, Alkiviathes Meldrum, John Washington and Jonathan G. C. Veinot
{"title":"Sonochemically activated room temperature hydrosilylation of silicon nanoparticles †","authors":"Jonathan Trach, Shawna Williams, Brendan Michalczyk, Cole Butler, Alkiviathes Meldrum, John Washington and Jonathan G. C. Veinot","doi":"10.1039/D4NA01067A","DOIUrl":null,"url":null,"abstract":"<p >Hydrosilylation of terminal alkenes and alkynes on the surfaces of hydrogen-terminated silicon nanoparticles (H-SiNPs) has provided a convenient approach toward tailoring surface chemistry. These reactions have traditionally required thermal, photochemical, or chemical activation and are not necessarily compatible with all substrates and particle sizes. Herein, we demonstrate that hydrosilylation on silicon nanoparticles (Si NPs) can be promoted at room temperature by exposing the reaction mixture to a standard ultrasonic bath. This new approach provides surface coverages approaching 30% after 24 h. Introduction of traditional radical initiators to the reaction mixture followed by sonication reduced the reaction time by approximately 4-fold. The Si NPs functionalized using the presented sonochemical methods were compared with equivalent systems modified using conventional thermally- and radically-induced procedures and retain their appealing photoluminescent properties and were found to have slightly lower (<em>i.e.</em>, 27 <em>vs.</em> 33%), albeit comparable degrees of functionalization.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 10","pages":" 3018-3027"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11969236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d4na01067a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrosilylation of terminal alkenes and alkynes on the surfaces of hydrogen-terminated silicon nanoparticles (H-SiNPs) has provided a convenient approach toward tailoring surface chemistry. These reactions have traditionally required thermal, photochemical, or chemical activation and are not necessarily compatible with all substrates and particle sizes. Herein, we demonstrate that hydrosilylation on silicon nanoparticles (Si NPs) can be promoted at room temperature by exposing the reaction mixture to a standard ultrasonic bath. This new approach provides surface coverages approaching 30% after 24 h. Introduction of traditional radical initiators to the reaction mixture followed by sonication reduced the reaction time by approximately 4-fold. The Si NPs functionalized using the presented sonochemical methods were compared with equivalent systems modified using conventional thermally- and radically-induced procedures and retain their appealing photoluminescent properties and were found to have slightly lower (i.e., 27 vs. 33%), albeit comparable degrees of functionalization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声化学激活的室温硅纳米颗粒氢硅化。
末端烯烃和炔在端氢硅纳米颗粒(H-SiNPs)表面的硅氢化反应为定制表面化学提供了一种方便的方法。这些反应传统上需要热、光化学或化学激活,并且不一定与所有底物和颗粒尺寸兼容。在此,我们证明了在室温下,通过将反应混合物暴露在标准超声波浴中,可以促进硅纳米颗粒(Si NPs)上的硅氢化反应。这种新方法在24小时后提供了接近30%的表面覆盖率。在反应混合物中引入传统的自由基引发剂,然后进行超声处理,将反应时间缩短了大约4倍。使用声化学方法功能化的Si NPs与使用传统热诱导和自由基诱导方法修饰的等效系统进行了比较,并保留了其吸引人的光致发光特性,并且发现尽管功能化程度相当,但功能化程度略低(即27% vs 33%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
期刊最新文献
Sequential treatment of cyanide and phenolic mixtures using CMC-PVP-nZVI/Pd and Rhodococcus pyridinivorans strain PDB9T N1. Targeted nanocarriers integrating photodynamic and photothermal therapy: a paradigm shift in rheumatoid arthritis treatment. Bimetallic Ti3C2T x with three synergistic catalytic pathways and enhanced dual enzyme activities for a visual sensing platform. Morphology-driven ionic pathway engineering in CuCo2O4/carbon nanotubes for high diffusion hybrid supercapacitors across diverse electrolyte conditions. Two-dimensional Fe-MOF and bimetallic NiFe-MOFs with different Ni : Fe ratios for superior electrochemical performance in supercapacitor applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1