Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders.

IF 10.7 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2025-04-05 eCollection Date: 2025-01-01 DOI:10.34133/research.0648
Qian-Yun Zhang, Chun-Wang Su, Qiang Luo, Celso Grebogi, Zi-Gang Huang, Junjie Jiang
{"title":"Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders.","authors":"Qian-Yun Zhang, Chun-Wang Su, Qiang Luo, Celso Grebogi, Zi-Gang Huang, Junjie Jiang","doi":"10.34133/research.0648","DOIUrl":null,"url":null,"abstract":"<p><p>The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0648"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0648","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应全脑动力学预测法:与精神障碍的相关性。
基于结构连通性的Hopf全脑模型,通过纳入异质性参数,量化健康和患病状态下的动态大脑特征,克服了传统以结构或功能连接为重点的方法的局限性。传统的参数拟合技术精度低,制约了其广泛应用。为了解决这个问题,我们使用模拟网络和合成模型验证了参数拟合方法,引入了诸如个体特定初始化和优化梯度下降等改进,从而减少了个体数据丢失。我们还建立了近似损失函数和梯度调整机制,提高了参数拟合的精度和稳定性。将这种改进的方法应用于重度抑郁症(MDD)和自闭症谱系障碍(ASD)的数据集,我们发现了患者和健康对照组之间大脑区域的差异,解释了相关的异常。这一严谨的验证对临床应用至关重要,为神经精神病学研究中的精确神经病理鉴定和新治疗铺平了道路,展示了临床神经病学的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
A Novel Autophagy Inhibitor p-Hydroxylcinnamaldehyde Suppresses Esophageal Squamous Cell Carcinoma by Targeting LDHA Phosphorylation-Mediated Metabolic Reprogramming. KIF13B Attenuates Sepsis-Induced Myocardial Dysfunction through the Stabilization of PLIN5. Programmable Macrophage Mimics for Inflammatory Meniscus Regeneration via Nanotherapy. Sea Anemone-Inspired Phase Change Composites for Efficient Heat Dissipation and Ultra-High Electromagnetic Interference Shielding. Zincology: Decoding Homeostasis to Unveil Disease Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1