GoalGrasp: Grasping Goals in Partially Occluded Scenarios Without Grasp Training

IF 9.9 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Industrial Informatics Pub Date : 2025-04-07 DOI:10.1109/TII.2025.3552653
Shun Gui;Kai Gui;Yan Luximon
{"title":"GoalGrasp: Grasping Goals in Partially Occluded Scenarios Without Grasp Training","authors":"Shun Gui;Kai Gui;Yan Luximon","doi":"10.1109/TII.2025.3552653","DOIUrl":null,"url":null,"abstract":"Grasping user-specified objects is crucial for robotic assistants; however, most current 6-DoF grasp detection methods are object-agnostic, making it challenging to grasp specific targets from a scene. To achieve that, we present GoalGrasp, a simple yet effective 6-DoF robot grasp pose detection method that does not rely on grasp pose annotations and grasp training. By combining 3-D bounding boxes and simple human grasp priors, our method introduces a novel paradigm for robot grasp pose detection. GoalGrasp's novelty is its swift grasping of user-specified objects and partial mitigation of occlusion issues. The experimental evaluation involves 18 common objects categorized into 7 classes. Our method generates dense grasp poses for 1000 scenes. We compare our method's grasp poses to existing approaches using a novel stability metric, demonstrating significantly higher grasp pose stability. In user-specified robot grasping tests, our method achieves a 94% success rate, and 92% under partial occlusion.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 7","pages":"5160-5170"},"PeriodicalIF":9.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10950090/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Grasping user-specified objects is crucial for robotic assistants; however, most current 6-DoF grasp detection methods are object-agnostic, making it challenging to grasp specific targets from a scene. To achieve that, we present GoalGrasp, a simple yet effective 6-DoF robot grasp pose detection method that does not rely on grasp pose annotations and grasp training. By combining 3-D bounding boxes and simple human grasp priors, our method introduces a novel paradigm for robot grasp pose detection. GoalGrasp's novelty is its swift grasping of user-specified objects and partial mitigation of occlusion issues. The experimental evaluation involves 18 common objects categorized into 7 classes. Our method generates dense grasp poses for 1000 scenes. We compare our method's grasp poses to existing approaches using a novel stability metric, demonstrating significantly higher grasp pose stability. In user-specified robot grasping tests, our method achieves a 94% success rate, and 92% under partial occlusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抓目标:在没有抓握训练的情况下,在部分闭塞的情况下抓目标
抓取用户指定的物体对机器人助手至关重要;然而,目前大多数6-DoF抓取检测方法都是与物体无关的,这使得从场景中抓取特定目标变得很困难。为了实现这一目标,我们提出了一种简单而有效的六自由度机器人抓取姿势检测方法GoalGrasp,该方法不依赖于抓取姿势注释和抓取训练。该方法将三维边界框与简单的人类抓取先验相结合,为机器人抓取姿态检测提供了一种新的范式。GoalGrasp的新颖之处在于其快速抓取用户指定的对象和部分缓解遮挡问题。实验评估涉及18个常见对象,分为7类。我们的方法为1000个场景生成密集的抓取姿势。我们使用一种新的稳定性度量将我们的方法的抓取姿势与现有方法进行比较,显示出明显更高的抓取姿势稳定性。在用户指定的机器人抓取测试中,我们的方法达到了94%的成功率,在部分遮挡下达到92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
期刊最新文献
IEEE Industrial Electronics Society Information IEEE Transactions on Industrial Informatics Information for Authors IEEE Industrial Electronics Society Publication Information ViTaDex: Vision–Tactile Fusion for 6-D Object-in-Hand Pose Estimation in Dexterous Anthropomorphic Manipulation DHE-Net: Dual-Encoder Hierarchical Network for Real-World Low-Cost LiDAR Point Cloud Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1