Ionized Water Facilitates the Sustainable Radical-Mediated Reduction of CO2 to Multi-Carbon Hydrocarbons and Oxygenates

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-04-07 DOI:10.1002/anie.202505042
Lei Li, Chunhua Cui
{"title":"Ionized Water Facilitates the Sustainable Radical-Mediated Reduction of CO2 to Multi-Carbon Hydrocarbons and Oxygenates","authors":"Lei Li,&nbsp;Chunhua Cui","doi":"10.1002/anie.202505042","DOIUrl":null,"url":null,"abstract":"<p>The abiotic synthesis of organic compounds from CO<sub>2</sub> and water under prebiotic conditions is a fundamental yet unresolved challenge in understanding the origins of life. Here we demonstrate a radical-mediated pathway for reducing CO<sub>2</sub> to C<sub>1</sub>‒C<sub>6</sub> hydrocarbons and oxygenates driven solely by ultraviolet (UV) irradiation of water, mimicking early Earth environments. Using electron paramagnetic resonance (EPR), <sup>17</sup>O/<sup>13</sup>C isotope labeling, and femtosecond transient absorption, we identify ionized water-derived radicals (H<sub>2</sub>O<sup>•+</sup>, <sup>•</sup>OH, e⁻<sub>aq</sub>, <sup>•</sup>H) as the key redox mediators. e⁻<sub>aq</sub> acts as a super-reductant (−2.9 V) to activate CO<sub>2</sub> into CO<sub>2</sub><sup>•</sup>⁻, while <sup>•</sup>H enables sequential hydrogenation. Critically, oxidative radicals (H<sub>2</sub>O<sup>•+</sup> and <sup>•</sup>OH) recycle recalcitrant oxygenates (formate and oxalate) back into active CO<sub>2</sub><sup>•</sup>⁻, sustaining a dynamic radical network. This process generates a diverse library of organic compounds, including methane, ethylene, and C<sub>6</sub> dimethyl succinate, via radical assembly mechanisms spanning hydrogen-atom transfer (HAT), self-coupling, and cross-coupling. By integrating experimental validation with prebiotic simulations (formate-mediated redox modulation), we resolve the paradox of inert CO<sub>2</sub>/H<sub>2</sub> activation in primordial environments and establish water not merely as a solvent but as a reactive matrix directing abiotic organic synthesis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 24","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The abiotic synthesis of organic compounds from CO2 and water under prebiotic conditions is a fundamental yet unresolved challenge in understanding the origins of life. Here we demonstrate a radical-mediated pathway for reducing CO2 to C1‒C6 hydrocarbons and oxygenates driven solely by ultraviolet (UV) irradiation of water, mimicking early Earth environments. Using electron paramagnetic resonance (EPR), 17O/13C isotope labeling, and femtosecond transient absorption, we identify ionized water-derived radicals (H2O•+, OH, e⁻aq, H) as the key redox mediators. e⁻aq acts as a super-reductant (−2.9 V) to activate CO2 into CO2⁻, while H enables sequential hydrogenation. Critically, oxidative radicals (H2O•+ and OH) recycle recalcitrant oxygenates (formate and oxalate) back into active CO2⁻, sustaining a dynamic radical network. This process generates a diverse library of organic compounds, including methane, ethylene, and C6 dimethyl succinate, via radical assembly mechanisms spanning hydrogen-atom transfer (HAT), self-coupling, and cross-coupling. By integrating experimental validation with prebiotic simulations (formate-mediated redox modulation), we resolve the paradox of inert CO2/H2 activation in primordial environments and establish water not merely as a solvent but as a reactive matrix directing abiotic organic synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离子水促进自由基介导的二氧化碳持续还原成多碳碳氢化合物和氧合物
在前生物条件下从二氧化碳和水非生物合成有机化合物是了解生命起源的一个基本挑战,但这一挑战尚未解决。在这里,我们模拟早期地球环境,展示了一种仅由紫外线照射水驱动的自由基介导的将二氧化碳还原为 C1-C6 碳氢化合物和含氧化合物的途径。利用电子顺磁共振(EPR)、17O/13C 同位素标记和飞秒瞬态吸收,我们发现电离水衍生自由基(H2O-+、-OH、e-aq、-H)是关键的氧化还原媒介。e-aq 作为超级还原剂(-2.9 V)将 CO2 活化为 CO2--,而 -H 则实现了连续氢化。重要的是,氧化自由基(H2O-+ 和 -OH)会将难降解的含氧酸盐(甲酸盐和草酸盐)循环回活性 CO2--,从而维持一个动态的自由基网络。这一过程通过氢原子转移、自偶联和交叉偶联等自由基组装机制产生了多种有机化合物,包括甲烷、乙烯和 C6 二甲基丁二酸酯。通过将实验验证与前生物模拟(格式介导的氧化还原调制)相结合,我们解决了原始环境中惰性 CO2/H2 激活的悖论,并确定水不仅是一种溶剂,而且是指导非生物有机合成的活性基质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Synergistic Action of Crystallophore and Imaging-Crystallophore Enhances the Production and Imaging of Protein Crystals Regulation of the D-Band Center Through Ligand Engineering in Silver Cluster-Based MOFs Enhances Acidic CO2 Electroreduction Ionomer-Driven Reaction Microenvironment Control in Bicarbonate-Mediated Integrated CO2 Capture and Electrolysis Selective Singlet Oxygen Generation over a Silver–Porphyrin Single-Atom-Site Catalyst for Ultrafast Sulfide Photooxidation Thiourea-Functionalized Ionizable Lipids Enable Systemic mRNA Delivery to Secondary Lymphoid Organs and Dual-Modal Lymphatic Metastasis Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1