Multilayer Film with Bioactive and Antiadhesive Layers for Accelerated Tendon Regeneration.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-04-21 Epub Date: 2025-04-07 DOI:10.1021/acsabm.5c00131
Ho Yong Kim, Seung Hyeon Cho, Min Ji Kim, Myung-Keun Song, Sang-Youn Song, Dong-Hee Kim, Se Heang Oh
{"title":"Multilayer Film with Bioactive and Antiadhesive Layers for Accelerated Tendon Regeneration.","authors":"Ho Yong Kim, Seung Hyeon Cho, Min Ji Kim, Myung-Keun Song, Sang-Youn Song, Dong-Hee Kim, Se Heang Oh","doi":"10.1021/acsabm.5c00131","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advances in surgical techniques for tendon injuries and improvements in rehabilitation, the challenge of achieving sufficient tendon regeneration and preventing postoperative tissue adhesions persists for orthopedic surgeons. In this study, we developed a multilayer film with a platelet-derived growth factor-BB (PDGF-BB)-immobilized leaf-stacked structure (LSS) layer (bioactive layer) and an alginate layer (antiadhesive layer) on both sides of a PCL film (<i>PDGF/FLSS-Alg</i>). The porous LSS layer on the PCL film was fabricated using a heating-cooling method with tetraglycol, where PDGF-BB was adsorbed onto the LSS layer. An alginate coating was applied on the opposite side to form the antiadhesion layer. The PDGF-BB loaded on the LSS layer provided a sustained release at effective concentrations for over 29 days. From in vitro cell culture and in vivo animal studies, the alginate layer proved effective in preventing cell/tissue adhesion; meanwhile, the bioactive layer facilitated tenogenic differentiation in <i>h</i>BMSCs and supported tendon regeneration. Accordingly, we propose that <i>PDGF/FLSS-Alg</i> offers a viable strategy for effective tendon regeneration in clinical practice.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"3375-3388"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.5c00131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Despite advances in surgical techniques for tendon injuries and improvements in rehabilitation, the challenge of achieving sufficient tendon regeneration and preventing postoperative tissue adhesions persists for orthopedic surgeons. In this study, we developed a multilayer film with a platelet-derived growth factor-BB (PDGF-BB)-immobilized leaf-stacked structure (LSS) layer (bioactive layer) and an alginate layer (antiadhesive layer) on both sides of a PCL film (PDGF/FLSS-Alg). The porous LSS layer on the PCL film was fabricated using a heating-cooling method with tetraglycol, where PDGF-BB was adsorbed onto the LSS layer. An alginate coating was applied on the opposite side to form the antiadhesion layer. The PDGF-BB loaded on the LSS layer provided a sustained release at effective concentrations for over 29 days. From in vitro cell culture and in vivo animal studies, the alginate layer proved effective in preventing cell/tissue adhesion; meanwhile, the bioactive layer facilitated tenogenic differentiation in hBMSCs and supported tendon regeneration. Accordingly, we propose that PDGF/FLSS-Alg offers a viable strategy for effective tendon regeneration in clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有生物活性和抗粘合层的多层膜加速肌腱再生。
尽管肌腱损伤的手术技术有了进步,康复也有了改善,但实现足够的肌腱再生和防止术后组织粘连仍然是骨科医生面临的挑战。在这项研究中,我们开发了一种多层膜,在PCL膜(PDGF/FLSS-Alg)的两侧有血小板衍生生长因子- bb (PDGF- bb)-固定化叶堆叠结构(LSS)层(生物活性层)和海藻酸盐层(抗粘剂层)。采用四甘醇加热冷却的方法在PCL薄膜上制备多孔LSS层,PDGF-BB被吸附在LSS层上。在另一侧涂上海藻酸盐涂层形成防粘层。负载在LSS层上的PDGF-BB以有效浓度持续释放超过29天。从体外细胞培养和体内动物实验中,海藻酸盐层被证明可以有效地防止细胞/组织粘附;同时,生物活性层促进hBMSCs的成肌腱分化,支持肌腱再生。因此,我们建议PDGF/FLSS-Alg在临床实践中为有效的肌腱再生提供可行的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Digitally Customized 3D PCL/β-TCP Scaffold for Precise Reconstruction of Alveolar Crest Defects. Sensitive On-Site Detection of Antibiotic Resistance Genes in Aquatic Products by aPCR-LFA Leveraging AuNPs for Amplification Specificity and Hybrid Probes for Structural Control. Binary Biobased Supramolecular Colloidal Suspensions: A Model for Sustainable Antibacterial Coatings and Soft Carrier Systems. Ultrasound-Responsive Perfluorohexane Nanodroplets for Cell-Targeted Histotripsy and Therapy. Gold-Coated Glybosomes Mimicking Physiological Micelles for ROS-Mediated Photothermal Ablation against Cervical Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1