Strain-Assisted Large-Scale 1T-MoS2 Synthesis and its Optical Synaptic Flash Memory Application

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-04-08 DOI:10.1002/smtd.202500200
Hyelim Shin, Gunhoo Woo, Jinill Cho, Sujeong Han, Junghyup Han, Seongho Kim, Younsang Kim, Hyeong-U Kim, Taesung Kim
{"title":"Strain-Assisted Large-Scale 1T-MoS2 Synthesis and its Optical Synaptic Flash Memory Application","authors":"Hyelim Shin,&nbsp;Gunhoo Woo,&nbsp;Jinill Cho,&nbsp;Sujeong Han,&nbsp;Junghyup Han,&nbsp;Seongho Kim,&nbsp;Younsang Kim,&nbsp;Hyeong-U Kim,&nbsp;Taesung Kim","doi":"10.1002/smtd.202500200","DOIUrl":null,"url":null,"abstract":"<p>2D transition-metal dichalcogenides (TMDCs) have attracted attention as promising materials for next-generation devices owing to their versatile electronic and optical properties. The phase variety of TMDCs provides strategic opportunities for performance enhancement. Herein, a novel method is proposed to synthesize wafer-scale 1T phase MoS₂ and, simultaneously, induce a phase transition via a plasma-assisted metal-sulfidation process and spontaneous internal strain. With thicker MoS<sub>2</sub> layers, the strong internal strain during synthesis suppresses the undesirable phase transition from the metastable 1T phase to the 2H phase, ensuring stabilization of the 1T phase. Furthermore, as-synthesized 1T-MoS₂ shows remarkable electrical properties owing to the narrow bandgap (0.4 eV) of its semi-metallic state. As a result, the 1T-phase MoS₂ floating gate (1T-FG) flash memory demonstrates a wider memory window, a higher on/off ratio, and improved stability compared to the 2H-phase MoS₂ floating gate (2H-FG) flash memory. A 5 × 5 array structure is constructed to validate large-scale integration. Notably, under light irradiation, a single 1T-FG memory enables carrier trapping in the floating gate, even in the off state. This study introduces a facile phase control strategy and provides insights into advanced nonvolatile memory and optoelectronic synaptic functionalities.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 8","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500200","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

2D transition-metal dichalcogenides (TMDCs) have attracted attention as promising materials for next-generation devices owing to their versatile electronic and optical properties. The phase variety of TMDCs provides strategic opportunities for performance enhancement. Herein, a novel method is proposed to synthesize wafer-scale 1T phase MoS₂ and, simultaneously, induce a phase transition via a plasma-assisted metal-sulfidation process and spontaneous internal strain. With thicker MoS2 layers, the strong internal strain during synthesis suppresses the undesirable phase transition from the metastable 1T phase to the 2H phase, ensuring stabilization of the 1T phase. Furthermore, as-synthesized 1T-MoS₂ shows remarkable electrical properties owing to the narrow bandgap (0.4 eV) of its semi-metallic state. As a result, the 1T-phase MoS₂ floating gate (1T-FG) flash memory demonstrates a wider memory window, a higher on/off ratio, and improved stability compared to the 2H-phase MoS₂ floating gate (2H-FG) flash memory. A 5 × 5 array structure is constructed to validate large-scale integration. Notably, under light irradiation, a single 1T-FG memory enables carrier trapping in the floating gate, even in the off state. This study introduces a facile phase control strategy and provides insights into advanced nonvolatile memory and optoelectronic synaptic functionalities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变辅助大规模1T-MoS2合成及其光突触闪存应用
二维过渡金属二硫族化合物(TMDCs)由于其多用途的电子和光学特性,作为下一代器件的有前途的材料而受到关注。TMDCs的阶段变化为性能增强提供了战略机会。本文提出了一种新的方法来合成晶圆级1T相MoS 2,同时通过等离子体辅助金属硫化过程和自发内部应变诱导相变。在较厚的MoS2层中,合成过程中强大的内部应变抑制了从亚稳的1T相到2H相的不良相变,确保了1T相的稳定。此外,合成的1T-MoS 2由于其半金属态的窄带隙(0.4 eV)而表现出优异的电学性能。因此,与2h相MoS 2浮动门(2H-FG)闪存相比,1t相MoS 2浮动门(1T-FG)闪存具有更宽的存储窗口,更高的开/关比和更好的稳定性。为了验证大规模集成,构造了一个5 × 5阵列结构。值得注意的是,在光照射下,单个1T-FG存储器可以在浮栅中捕获载流子,即使在关闭状态下也是如此。这项研究介绍了一种简单的相位控制策略,并为先进的非易失性存储器和光电子突触功能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Dual-function, Reusable, and Flexible Thermal Interface for Kinetic Monitoring of In Vitro Bioassays. Materials and Structures of Skin-Interfaced Electrodes for Reducing Motion Artifacts in Neural Recording. VN Thin Films via MOCVD Using a New Vanadium Precursor: Linking Growth Chemistry to Functional Surface Properties. A Method for Oscillation-Free Dynamic IR Compensation During Potentiostatic Electrolyses. Organelle Sorting and Proteomic Analysis to Identify Proteins Involved in the Uptake and Intracellular Trafficking of Nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1