Rethinking GWAS: how lessons from genetic screens and artificial intelligence could reveal biological mechanisms.

Dennis J Hazelett
{"title":"Rethinking GWAS: how lessons from genetic screens and artificial intelligence could reveal biological mechanisms.","authors":"Dennis J Hazelett","doi":"10.1093/bioinformatics/btaf153","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Modern single-cell omics data are key to unraveling the complex mechanisms underlying risk for complex diseases revealed by genome-wide association studies (GWAS). Phenotypic screens in model organisms have several important parallels to GWAS which the author explores in this essay.</p><p><strong>Results: </strong>The author provides the historical context of such screens, comparing and contrasting similarities to association studies, and how these screens in model organisms can teach us what to look for. Then the author considers how the results of GWAS might be exhaustively interrogated to interpret the biological mechanisms underpinning disease processes. Finally, the author proposes a general framework for tackling this problem computationally, and explore the data, mechanisms, and technology (both existing and yet to be invented) that are necessary to complete the task.</p><p><strong>Availability and implementation: </strong>There are no data or code associated with this article.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Modern single-cell omics data are key to unraveling the complex mechanisms underlying risk for complex diseases revealed by genome-wide association studies (GWAS). Phenotypic screens in model organisms have several important parallels to GWAS which the author explores in this essay.

Results: The author provides the historical context of such screens, comparing and contrasting similarities to association studies, and how these screens in model organisms can teach us what to look for. Then the author considers how the results of GWAS might be exhaustively interrogated to interpret the biological mechanisms underpinning disease processes. Finally, the author proposes a general framework for tackling this problem computationally, and explore the data, mechanisms, and technology (both existing and yet to be invented) that are necessary to complete the task.

Availability and implementation: There are no data or code associated with this article.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重新思考GWAS:基因筛选和人工智能的教训如何揭示生物机制。
动机全基因组关联研究(GWAS)揭示了复杂疾病风险的复杂机制,而现代单细胞组学数据是揭示这些风险的关键。模式生物的表型筛选与全基因组关联研究(GWAS)有几个重要的相似之处,我将在这篇文章中探讨这些相似之处:结果:我介绍了此类筛选的历史背景,比较了与关联研究的相似之处,以及模型生物中的这些筛选如何教会我们寻找什么。然后,我将考虑如何详尽地分析 GWAS 的结果,以解释疾病过程的生物学机制。最后,我提出了一个通过计算解决这一问题的总体框架,并探讨了完成这一任务所需的数据、机制和技术(包括现有的和有待发明的):本文无相关数据或代码:不适用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RoBep: A Region-Oriented Deep Learning Model for B-Cell Epitope Prediction. mimicDetector: a pipeline for protein motif mimicry detection in host-pathogen interactions. Malaria-GENOMAP: A web-based tool for exploring genomic variation of malaria parasites. Capturing gene-cell duality in a cat's cradle. From Articles to Code: On-Demand Generation of Core Algorithms from Scientific Publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1