Dynamic Erasing Network With Adaptive Temporal Modeling for Weakly Supervised Video Anomaly Detection

IF 8.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE transactions on neural networks and learning systems Pub Date : 2025-04-08 DOI:10.1109/TNNLS.2025.3553556
Chen Zhang;Guorong Li;Yuankai Qi;Hanhua Ye;Laiyun Qing;Ming-Hsuan Yang;Qingming Huang
{"title":"Dynamic Erasing Network With Adaptive Temporal Modeling for Weakly Supervised Video Anomaly Detection","authors":"Chen Zhang;Guorong Li;Yuankai Qi;Hanhua Ye;Laiyun Qing;Ming-Hsuan Yang;Qingming Huang","doi":"10.1109/TNNLS.2025.3553556","DOIUrl":null,"url":null,"abstract":"The weakly supervised video anomaly detection aims to learn a detection model using only video-level labeled data. Prior studies ignore the complexity or duration of anomalies present in abnormal videos during temporal modeling. Moreover, existing works usually detect the most abnormal segments, potentially overlooking the completeness of anomalies. We propose a dynamic erasing network (DE-Net) for weakly supervised video anomaly detection, which learns video-specific temporal features via adaptive temporal modeling (ATM) to address these limitations. Specifically, to handle duration variations of abnormal events, we propose an ATM module capable of adaptively selecting and aggregating the most appropriate <italic>K</i> temporal scale features for each video. Then, we design a dynamic erasing (DE) strategy that dynamically assesses the completeness of the detected anomalies and erases prominent abnormal segments to encourage the model to discover gentle abnormal segments. The proposed method achieves favorable performance compared to several state-of-the-art approaches on the widely used XD-Violence, TAD, and UCF-Crime datasets.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"36 9","pages":"16706-16720"},"PeriodicalIF":8.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10957754/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The weakly supervised video anomaly detection aims to learn a detection model using only video-level labeled data. Prior studies ignore the complexity or duration of anomalies present in abnormal videos during temporal modeling. Moreover, existing works usually detect the most abnormal segments, potentially overlooking the completeness of anomalies. We propose a dynamic erasing network (DE-Net) for weakly supervised video anomaly detection, which learns video-specific temporal features via adaptive temporal modeling (ATM) to address these limitations. Specifically, to handle duration variations of abnormal events, we propose an ATM module capable of adaptively selecting and aggregating the most appropriate K temporal scale features for each video. Then, we design a dynamic erasing (DE) strategy that dynamically assesses the completeness of the detected anomalies and erases prominent abnormal segments to encourage the model to discover gentle abnormal segments. The proposed method achieves favorable performance compared to several state-of-the-art approaches on the widely used XD-Violence, TAD, and UCF-Crime datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用自适应时态建模的动态擦除网络用于弱监督视频异常检测
弱监督视频异常检测旨在学习仅使用视频级标记数据的检测模型。以往的研究在时间建模过程中忽略了异常视频中存在的异常的复杂性或持续时间。此外,现有的工作通常检测最异常的部分,潜在地忽略了异常的完整性。我们提出了一种用于弱监督视频异常检测的动态擦除网络(DE-Net),它通过自适应时间建模(ATM)学习视频特定的时间特征来解决这些限制。具体来说,为了处理异常事件的持续时间变化,我们提出了一个ATM模块,能够自适应地为每个视频选择和聚合最合适的K时间尺度特征。然后,我们设计了一种动态擦除(DE)策略,动态评估检测到的异常的完整性,并擦除突出的异常段,以鼓励模型发现温和的异常段。在广泛使用的XD-Violence、TAD和UCF-Crime数据集上,与几种最先进的方法相比,所提出的方法取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE transactions on neural networks and learning systems
IEEE transactions on neural networks and learning systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
CiteScore
23.80
自引率
9.60%
发文量
2102
审稿时长
3-8 weeks
期刊介绍: The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.
期刊最新文献
Graph Transformers: A Survey Multisynchronization of Delayed Coupled Neural Networks With General Activation Functions via Impulsive Control Anomaly Subgraph Detection on Multiple Associated Attributed Networks ScaDyG: A New Paradigm for Large-Scale Dynamic Graph Learning CPFformer: A Hierarchical-Based Graph Modeling Fusion Framework for Making the Emotional Features of Chinese Poetry Pronunciation More Controllable
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1