Long-term physical exercise facilitates putative glymphatic and meningeal lymphatic vessel flow in humans

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-04-09 DOI:10.1038/s41467-025-58726-1
Roh-Eul Yoo, Jun-Hee Kim, Hyo Youl Moon, Jae Yeon Park, Seongmin Cheon, Hyun-Suk Shin, Dohyun Han, Yukyoum Kim, Sung-Hong Park, Seung Hong Choi
{"title":"Long-term physical exercise facilitates putative glymphatic and meningeal lymphatic vessel flow in humans","authors":"Roh-Eul Yoo, Jun-Hee Kim, Hyo Youl Moon, Jae Yeon Park, Seongmin Cheon, Hyun-Suk Shin, Dohyun Han, Yukyoum Kim, Sung-Hong Park, Seung Hong Choi","doi":"10.1038/s41467-025-58726-1","DOIUrl":null,"url":null,"abstract":"<p>Regular voluntary exercise has been shown to increase waste transport through the glymphatic system in mice. Here, we investigate the impact of physical exercise on both upstream and downstream brain waste clearance in healthy volunteers via noninvasive MR imaging. Putative glymphatic influx, evaluated using intravenous contrast-enhanced dynamic T1 mapping, increases significantly at the putamen after 12 weeks of long-term exercise using a cycle ergometer. The putative meningeal lymphatic vessel size and flow, measured by intravenous contrast-enhanced black-blood imaging and IR-ALADDIN technique, increase significantly after long-term exercise. Plasma proteomics reveals significant changes in inflammation-related and immune-related proteins (down-regulated: S100A8, S100A9, PSMA3, and DEFA1A3; up-regulated: J chain) after long-term exercise, which correlate with putative glymphatic influx or mLV flow. Our results suggest that increased glymphatic and mLV flow may be the potential mechanism underlying the neuroprotective effects of exercise on cognition, highlighting the importance of long-term, regular exercise.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58726-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Regular voluntary exercise has been shown to increase waste transport through the glymphatic system in mice. Here, we investigate the impact of physical exercise on both upstream and downstream brain waste clearance in healthy volunteers via noninvasive MR imaging. Putative glymphatic influx, evaluated using intravenous contrast-enhanced dynamic T1 mapping, increases significantly at the putamen after 12 weeks of long-term exercise using a cycle ergometer. The putative meningeal lymphatic vessel size and flow, measured by intravenous contrast-enhanced black-blood imaging and IR-ALADDIN technique, increase significantly after long-term exercise. Plasma proteomics reveals significant changes in inflammation-related and immune-related proteins (down-regulated: S100A8, S100A9, PSMA3, and DEFA1A3; up-regulated: J chain) after long-term exercise, which correlate with putative glymphatic influx or mLV flow. Our results suggest that increased glymphatic and mLV flow may be the potential mechanism underlying the neuroprotective effects of exercise on cognition, highlighting the importance of long-term, regular exercise.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长期体育锻炼可促进人体淋巴和脑膜淋巴管的流动
有规律的自愿运动已被证明可以增加小鼠通过淋巴系统的废物运输。在这里,我们通过无创磁共振成像研究了体育锻炼对健康志愿者上游和下游脑废物清除的影响。假定的淋巴内流,通过静脉内对比增强动态T1测绘来评估,在使用周期测力仪进行12周的长期运动后,壳核的淋巴内流显著增加。经静脉对比增强黑血成像和IR-ALADDIN技术测量的推测的脑膜淋巴管大小和流量在长期运动后显著增加。血浆蛋白质组学显示炎症相关和免疫相关蛋白显著变化(下调:S100A8、S100A9、PSMA3和DEFA1A3;在长期运动后上调:J链),这与假定的淋巴内流或mLV流相关。我们的研究结果表明,增加的淋巴和mLV流量可能是运动对认知的神经保护作用的潜在机制,强调了长期、有规律运动的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Alleviating non-radiative losses in organic solar cells through side-chain regulation of low-bandgap non-fullerene acceptors. Regular-wrinkling tunable MXene lattice for electromagnetic interference shielding Integration of large vision language models for efficient post-disaster damage assessment and reporting Decoupling slab gliding and lattice contraction in Na layered oxides to enable high-voltage Na-ion batteries Structural basis for late maturation steps of mitochondrial respiratory chain complex IV within the human respirasome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1