Alternative splicing engineering modulation of thermal/electrical transmission properties in low-dimensional nanodevices based on five-carbon ring structures†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2025-04-09 DOI:10.1039/D4CP04772A
Meng Qian and Bei Zhang
{"title":"Alternative splicing engineering modulation of thermal/electrical transmission properties in low-dimensional nanodevices based on five-carbon ring structures†","authors":"Meng Qian and Bei Zhang","doi":"10.1039/D4CP04772A","DOIUrl":null,"url":null,"abstract":"<p >Alternative splicing engineering is a potential strategy to improve the thermoelectric conversion efficiency of low-dimensional nanodevices. The unique thermal/electrical transport properties of 5-carbon ring-based structures can significantly improve thermoelectric performance. The thermoelectric properties of three carbon nanomaterials and devices containing five-carbon ring structures, namely, penta-graphene (PG), penta-octa-penta-graphene (POPG) and Θ-graphene (ΘG), were investigated using density functional theory and non-equilibrium Green's function methods. The results demonstrated that the folded structure of PG gave rise to ring-like electrical transport properties, which greatly reduced effective conductance. POPG exhibited smooth charge transport behavior without scattering loops, leading to relatively higher conductance compared to PG. Meanwhile, embedded 8-carbon ring structures effectively flattened the folded structure of PG and significantly reduced vertical oscillation behavior, resulting in an increase in thermal conductance. For ΘG, the addition of distorted 6-carbon ring structures excited reverse charge transport paths, resulting in lower conductance compared to POPG. The splicing geometry between the 5-carbon ring and 6-carbon ring structure disrupted the original grain boundaries, leading to enhanced phonon scattering and more localized vibrational modes. As a result, ΘG achieved a <em>ZT</em> value of 0.54 near the Fermi energy level at room temperature (300 K).</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 17","pages":" 8783-8791"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d4cp04772a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Alternative splicing engineering is a potential strategy to improve the thermoelectric conversion efficiency of low-dimensional nanodevices. The unique thermal/electrical transport properties of 5-carbon ring-based structures can significantly improve thermoelectric performance. The thermoelectric properties of three carbon nanomaterials and devices containing five-carbon ring structures, namely, penta-graphene (PG), penta-octa-penta-graphene (POPG) and Θ-graphene (ΘG), were investigated using density functional theory and non-equilibrium Green's function methods. The results demonstrated that the folded structure of PG gave rise to ring-like electrical transport properties, which greatly reduced effective conductance. POPG exhibited smooth charge transport behavior without scattering loops, leading to relatively higher conductance compared to PG. Meanwhile, embedded 8-carbon ring structures effectively flattened the folded structure of PG and significantly reduced vertical oscillation behavior, resulting in an increase in thermal conductance. For ΘG, the addition of distorted 6-carbon ring structures excited reverse charge transport paths, resulting in lower conductance compared to POPG. The splicing geometry between the 5-carbon ring and 6-carbon ring structure disrupted the original grain boundaries, leading to enhanced phonon scattering and more localized vibrational modes. As a result, ΘG achieved a ZT value of 0.54 near the Fermi energy level at room temperature (300 K).

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于五碳环结构的低维纳米器件的热/电传输性能的交替拼接工程调制
选择性拼接工程是提高低维纳米器件热电转换效率的一种潜在策略。5碳环基结构独特的热/电输运特性可以显著提高热电性能。利用密度泛函理论和非平衡格林函数方法,研究了含五碳环结构的五-石墨烯(PG)、五-八-五-石墨烯(POPG)和Θ-graphene (ΘG)三种碳纳米材料和器件的热电性能。结果表明,PG的折叠结构产生了环状电输运性质,大大降低了有效电导。POPG表现出平滑的电荷输运行为,没有散射环,导致其电导相对于PG更高。同时,嵌入的8碳环结构有效地使PG的折叠结构变平,显著降低了PG的垂直振荡行为,从而导致热导增加。对于ΘG,扭曲的6碳环结构的加入激发了反向电荷传输路径,导致与POPG相比电导更低。5碳环和6碳环之间的剪接几何结构破坏了原有的晶界,导致声子散射增强和更局部化的振动模式。结果,ΘG在室温(300 K)下在费米能级附近获得了0.54的ZT值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
CO2 Photoreduction on Mixed Ti/Zr-MOF-525: Bicarbonate as the Active Intermediate and the Role of Ti Substitution Amorphous NiB as electrocatalyst from KA oil to succinic acid Designing hybrid materials with advanced optical properties using superalkali M3O (M = Li, Na, and K) and isoelectronic species of cyclo[18]carbon (B6C6N6 and B9N9) Synthesis of a Gemini-Mannich base efficient corrosion inhibitor for oilfield acidification Chiral-Induced Spin Selectivity: An Interdisciplinary Perspective from Chemical Physics to Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1