Molecular Insights on Methane Hydrate Dissociation in the Presence/Absence of Poly-N-vinylcaprolactam: Effects of Gas Saturation and Nanobubbles

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2025-03-31 DOI:10.1021/acs.energyfuels.5c00131
Yang Liu*, Huiyun Mu, Xiaofang Lv*, Yisong Yu*, Qianli Ma, Chuanshuo Wang, Xiaoyan Li, Shidong Zhou and Bingcai Sun, 
{"title":"Molecular Insights on Methane Hydrate Dissociation in the Presence/Absence of Poly-N-vinylcaprolactam: Effects of Gas Saturation and Nanobubbles","authors":"Yang Liu*,&nbsp;Huiyun Mu,&nbsp;Xiaofang Lv*,&nbsp;Yisong Yu*,&nbsp;Qianli Ma,&nbsp;Chuanshuo Wang,&nbsp;Xiaoyan Li,&nbsp;Shidong Zhou and Bingcai Sun,&nbsp;","doi":"10.1021/acs.energyfuels.5c00131","DOIUrl":null,"url":null,"abstract":"<p >Natural gas hydrate (NGH) is a promising clean energy source with abundant reserves. Unveiling the mechanisms controlling hydrate dissociation and finding chemical agents that promote hydrate dissociation are of great significance for achieving controllable exploitation of NGH. This study utilized molecular dynamics simulation to investigate the dissociation mechanism of hydrates under different gas saturation levels as well as the influence of poly-<i>N</i>-vinylcaprolactam (PVCap) on hydrate dissociation. The simulation results indicate that in the systems without PVCap, the release rate of methane molecules from the methane hydrate increases with the methane content in the initial liquid phase. The systems with different methane saturations undergo different hydrate dissociation stages. For the systems with PVCap, it was found that PVCap has a certain promoting effect on methane hydrate dissociation; the promotion effect decreased with the increase in methane content in the initial liquid phase. The mechanism by which PVCap on methane hydrate dissociation was proposed: PVCap can adsorb methane molecules, promoting the formation of nanobubbles, reducing methane concentration in the liquid phase, thereby increasing the driving force for methane hydrate dissociation, and promoting the dissociation of methane hydrates.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 14","pages":"6832–6848 6832–6848"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00131","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Natural gas hydrate (NGH) is a promising clean energy source with abundant reserves. Unveiling the mechanisms controlling hydrate dissociation and finding chemical agents that promote hydrate dissociation are of great significance for achieving controllable exploitation of NGH. This study utilized molecular dynamics simulation to investigate the dissociation mechanism of hydrates under different gas saturation levels as well as the influence of poly-N-vinylcaprolactam (PVCap) on hydrate dissociation. The simulation results indicate that in the systems without PVCap, the release rate of methane molecules from the methane hydrate increases with the methane content in the initial liquid phase. The systems with different methane saturations undergo different hydrate dissociation stages. For the systems with PVCap, it was found that PVCap has a certain promoting effect on methane hydrate dissociation; the promotion effect decreased with the increase in methane content in the initial liquid phase. The mechanism by which PVCap on methane hydrate dissociation was proposed: PVCap can adsorb methane molecules, promoting the formation of nanobubbles, reducing methane concentration in the liquid phase, thereby increasing the driving force for methane hydrate dissociation, and promoting the dissociation of methane hydrates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
存在/不存在聚n -乙烯基己内酰胺时甲烷水合物解离的分子观察:气体饱和度和纳米气泡的影响
天然气水合物是一种储量丰富、前景广阔的清洁能源。揭示水合物解离机理,寻找促进水合物解离的化学制剂,对实现天然气水合物的可控开发具有重要意义。本研究利用分子动力学模拟研究了不同气体饱和度下水合物的解离机理,以及聚n -乙烯己内酰胺(PVCap)对水合物解离的影响。模拟结果表明,在不加PVCap的体系中,甲烷水合物中甲烷分子的释放速率随着初始液相中甲烷含量的增加而增加。不同甲烷饱和度体系的水合物解离阶段不同。对于添加PVCap的体系,发现PVCap对甲烷水合物的解离有一定的促进作用;随着初始液相甲烷含量的增加,促进作用逐渐减弱。提出了PVCap对甲烷水合物解离作用的机理:PVCap可以吸附甲烷分子,促进纳米气泡的形成,降低液相中甲烷浓度,从而增加甲烷水合物解离的驱动力,促进甲烷水合物的解离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Performance of SrFeO3 Perovskites with A-Site Ca Doping and A/B-Site Ca, Co Co-Doping for Thermochemical Energy Storage Numerical Simulation of CO2-Enhanced Gas Recovery and Sequestration in Heterogeneous Shale Gas Reservoirs Sn Hollow Spheres as a Promising Anode for High-Performance Sodium-Ion Storage Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1