Fabrication of Na0.67Li0.05Ni0.28Mn0.67O2 Cathode with Synergistic Engineering of Li-Doping and Mn-Precursor for High-Performance Sodium-Ion Batteries

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2025-03-29 DOI:10.1021/acs.energyfuels.5c00564
Xiongfeng Lin, Junjun Zhang*, Daxian Cao, Hangcheng Yang, Weizhou Chai, Shuoyu Wang, Yu Chen and Hongkang Wang*, 
{"title":"Fabrication of Na0.67Li0.05Ni0.28Mn0.67O2 Cathode with Synergistic Engineering of Li-Doping and Mn-Precursor for High-Performance Sodium-Ion Batteries","authors":"Xiongfeng Lin,&nbsp;Junjun Zhang*,&nbsp;Daxian Cao,&nbsp;Hangcheng Yang,&nbsp;Weizhou Chai,&nbsp;Shuoyu Wang,&nbsp;Yu Chen and Hongkang Wang*,&nbsp;","doi":"10.1021/acs.energyfuels.5c00564","DOIUrl":null,"url":null,"abstract":"<p >P2-type transition-metal oxides as promising cathode materials for sodium-ion batteries (SIBs) possess unique layered structures and superior electrochemical properties, but suffer from the kinetic retardation and structural instability caused by problems such as Na<sup>+</sup>/vacancy ordering, Jahn–Teller distortion, and irreversible P2–O2 phase transition. Herein, we report the fabrication of a P2-type Na<sub>0.67</sub>Li<sub>0.05</sub>Ni<sub>0.28</sub>Mn<sub>0.67</sub>O<sub>2</sub> cathode material via a simple solid-state method, using micro-octahedral Mn<sub>2</sub>O<sub>3</sub> as Mn-precursor with simultaneous Li-doping. The combined adoptions of micro-octahedral Mn<sub>2</sub>O<sub>3</sub> precursors and Li-doping effectively enhance the structural stability of the Na<sub>0.67</sub>Li<sub>0.05</sub>Ni<sub>0.28</sub>Mn<sub>0.67</sub>O<sub>2</sub> cathode by inhibiting the Jahn–Teller distortion and suppressing the phase transition of P2–O2 and increase the electronic conductivity and ion diffusion coefficient during charging and discharging processes. Consequently, the as-fabricated Na<sub>0.67</sub>Li<sub>0.05</sub>Ni<sub>0.28</sub>Mn<sub>0.67</sub>O<sub>2</sub> cathode demonstrates superior sodium storage performance, delivering a reversible capacity of 144.6 mAh g<sup>–1</sup> at 0.1C with 91.8% capacity retention after 50 cycles and sustaining 82.6% capacity retention after 500 cycles at 5C. This research offers a viable approach for creating high-performance P2-type cathodes for advanced SIBs.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 14","pages":"7110–7118 7110–7118"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.5c00564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

P2-type transition-metal oxides as promising cathode materials for sodium-ion batteries (SIBs) possess unique layered structures and superior electrochemical properties, but suffer from the kinetic retardation and structural instability caused by problems such as Na+/vacancy ordering, Jahn–Teller distortion, and irreversible P2–O2 phase transition. Herein, we report the fabrication of a P2-type Na0.67Li0.05Ni0.28Mn0.67O2 cathode material via a simple solid-state method, using micro-octahedral Mn2O3 as Mn-precursor with simultaneous Li-doping. The combined adoptions of micro-octahedral Mn2O3 precursors and Li-doping effectively enhance the structural stability of the Na0.67Li0.05Ni0.28Mn0.67O2 cathode by inhibiting the Jahn–Teller distortion and suppressing the phase transition of P2–O2 and increase the electronic conductivity and ion diffusion coefficient during charging and discharging processes. Consequently, the as-fabricated Na0.67Li0.05Ni0.28Mn0.67O2 cathode demonstrates superior sodium storage performance, delivering a reversible capacity of 144.6 mAh g–1 at 0.1C with 91.8% capacity retention after 50 cycles and sustaining 82.6% capacity retention after 500 cycles at 5C. This research offers a viable approach for creating high-performance P2-type cathodes for advanced SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高性能钠离子电池用锂掺杂与锰前驱体协同工程制备Na0.67Li0.05Ni0.28Mn0.67O2阴极
p2型过渡金属氧化物具有独特的层状结构和优异的电化学性能,是钠离子电池极具发展前景的正极材料,但由于Na+/空位有序、jan - teller畸变和不可逆的P2-O2相变等问题,存在动力学迟滞和结构不稳定的问题。本文以微八面体Mn2O3为锰前驱体,同时掺杂锂,采用简单的固态法制备了p2型Na0.67Li0.05Ni0.28Mn0.67O2正极材料。微八面体Mn2O3前驱体与li掺杂的结合,通过抑制jann - teller畸变和抑制P2-O2的相变,有效提高了Na0.67Li0.05Ni0.28Mn0.67O2阴极的结构稳定性,提高了充放电过程中的电子电导率和离子扩散系数。因此,制备的Na0.67Li0.05Ni0.28Mn0.67O2阴极表现出优异的钠存储性能,在0.1C下提供144.6 mAh g-1的可逆容量,50次循环后容量保留率为91.8%,在5C下500次循环后容量保留率为82.6%。该研究为先进sib的高性能p2型阴极制造提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Performance of SrFeO3 Perovskites with A-Site Ca Doping and A/B-Site Ca, Co Co-Doping for Thermochemical Energy Storage Numerical Simulation of CO2-Enhanced Gas Recovery and Sequestration in Heterogeneous Shale Gas Reservoirs Sn Hollow Spheres as a Promising Anode for High-Performance Sodium-Ion Storage Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1