Scene-enhanced multi-scale temporal aware network for video moment retrieval

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2025-04-09 DOI:10.1016/j.patcog.2025.111642
Di Wang , Yousheng Yu , Shaofeng Li , Haodi Zhong , Xiao Liang , Lin Zhao
{"title":"Scene-enhanced multi-scale temporal aware network for video moment retrieval","authors":"Di Wang ,&nbsp;Yousheng Yu ,&nbsp;Shaofeng Li ,&nbsp;Haodi Zhong ,&nbsp;Xiao Liang ,&nbsp;Lin Zhao","doi":"10.1016/j.patcog.2025.111642","DOIUrl":null,"url":null,"abstract":"<div><div>Video moment retrieval aims to locate the target moment in an untrimmed video using a natural language query. Current methods to moment retrieval are typically tailored for scenarios where temporal localization information is often simple. Nevertheless, these methods overlook the scenarios where a video includes complex localization information, which makes it difficult to achieve precise retrieval across videos that encompass both complex and simple temporal localization information. To address this limitation, we propose a novel Scene-enhanced Multi-scale Temporal Aware Network (SMTAN) designed to adaptively extract different temporal localization information in different videos. Our method involves the comprehensive processing of video moments across fine-grained multiply scales and uses a prior knowledge of the scene for localization information enhancement. This method facilitates the construction of multi-scale temporal feature maps, enabling extraction of both complex and simple temporal localization information in different videos. Extensive experiments on two benchmark datasets demonstrate that our proposed network surpasses the state-of-the-art methods and achieves more accurate retrieval of different localization information across videos.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"165 ","pages":"Article 111642"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325003024","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Video moment retrieval aims to locate the target moment in an untrimmed video using a natural language query. Current methods to moment retrieval are typically tailored for scenarios where temporal localization information is often simple. Nevertheless, these methods overlook the scenarios where a video includes complex localization information, which makes it difficult to achieve precise retrieval across videos that encompass both complex and simple temporal localization information. To address this limitation, we propose a novel Scene-enhanced Multi-scale Temporal Aware Network (SMTAN) designed to adaptively extract different temporal localization information in different videos. Our method involves the comprehensive processing of video moments across fine-grained multiply scales and uses a prior knowledge of the scene for localization information enhancement. This method facilitates the construction of multi-scale temporal feature maps, enabling extraction of both complex and simple temporal localization information in different videos. Extensive experiments on two benchmark datasets demonstrate that our proposed network surpasses the state-of-the-art methods and achieves more accurate retrieval of different localization information across videos.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于场景增强多尺度时间感知网络的视频时刻检索
视频时刻检索的目的是利用自然语言查询在未修剪的视频中定位目标时刻。当前的时刻检索方法通常是针对时间定位信息通常很简单的情况量身定制的。然而,这些方法忽略了视频中包含复杂定位信息的场景,这使得难以在包含复杂和简单时间定位信息的视频中实现精确检索。为了解决这一限制,我们提出了一种新的场景增强多尺度时间感知网络(SMTAN),旨在自适应地提取不同视频中的不同时间定位信息。我们的方法涉及跨细粒度多尺度的视频时刻的综合处理,并使用场景的先验知识进行定位信息增强。该方法便于构建多尺度时间特征图,可以同时提取不同视频中复杂和简单的时间定位信息。在两个基准数据集上的大量实验表明,我们提出的网络超越了目前最先进的方法,并且在视频中实现了更准确的不同定位信息检索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
3D temporal-spatial convolutional LSTM network for assessing drug addiction treatment Pairwise joint symmetric uncertainty based on macro-neighborhood entropy for heterogeneous feature selection Low-rank fused modality assisted magnetic resonance imaging reconstruction via an anatomical variation adaptive transformer LCF3D: A robust and real-time late-cascade fusion framework for 3D object detection in autonomous driving Test-time adaptive vision-language alignment for zero-shot group activity recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1