Stochastic limited memory bundle algorithm for clustering in big data

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Pub Date : 2025-04-05 DOI:10.1016/j.patcog.2025.111654
Napsu Karmitsa , Ville-Pekka Eronen , Marko M. Mäkelä , Tapio Pahikkala , Antti Airola
{"title":"Stochastic limited memory bundle algorithm for clustering in big data","authors":"Napsu Karmitsa ,&nbsp;Ville-Pekka Eronen ,&nbsp;Marko M. Mäkelä ,&nbsp;Tapio Pahikkala ,&nbsp;Antti Airola","doi":"10.1016/j.patcog.2025.111654","DOIUrl":null,"url":null,"abstract":"<div><div>Clustering is a crucial task in data mining and machine learning. In this paper, we propose an efficient algorithm, <span>Big-Clust</span>, for solving minimum sum-of-squares clustering problems in large and big datasets. We first develop a novel stochastic limited memory bundle algorithm (<span>SLMBA</span>) for large-scale nonsmooth finite-sum optimization problems and then formulate the clustering problem accordingly. The <span>Big-Clust</span>algorithm — a stochastic adaptation of the incremental clustering methodology — aims to find the global or a high-quality local solution for the clustering problem. It detects good starting points, i.e., initial cluster centers, for the <span>SLMBA</span>, applied as an underlying solver. We evaluate <span>Big-Clust</span>on several real-world datasets with numerous data points and features, comparing its performance with other clustering algorithms designed for large and big data. Numerical results demonstrate the efficiency of the proposed algorithm and the high quality of the found solutions on par with the best existing methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"165 ","pages":"Article 111654"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320325003140","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is a crucial task in data mining and machine learning. In this paper, we propose an efficient algorithm, Big-Clust, for solving minimum sum-of-squares clustering problems in large and big datasets. We first develop a novel stochastic limited memory bundle algorithm (SLMBA) for large-scale nonsmooth finite-sum optimization problems and then formulate the clustering problem accordingly. The Big-Clustalgorithm — a stochastic adaptation of the incremental clustering methodology — aims to find the global or a high-quality local solution for the clustering problem. It detects good starting points, i.e., initial cluster centers, for the SLMBA, applied as an underlying solver. We evaluate Big-Cluston several real-world datasets with numerous data points and features, comparing its performance with other clustering algorithms designed for large and big data. Numerical results demonstrate the efficiency of the proposed algorithm and the high quality of the found solutions on par with the best existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大数据聚类的随机有限内存束算法
聚类是数据挖掘和机器学习中的一项重要任务。在本文中,我们提出了一种高效的算法big - clust,用于解决大型和大数据集中的最小平方和聚类问题。本文首先针对大规模非光滑有限和优化问题提出了一种新的随机有限记忆束算法(SLMBA),并在此基础上提出了相应的聚类问题。大聚类算法是对增量聚类方法的一种随机改进,其目的是为聚类问题寻找全局或高质量的局部解。它为SLMBA检测良好的起始点,即作为底层求解器应用的初始集群中心。我们评估了几个具有大量数据点和特征的真实世界数据集,并将其与其他为大数据和大数据设计的聚类算法的性能进行了比较。数值结果表明,该算法具有较高的效率,解的质量与现有的最佳方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
期刊最新文献
3D temporal-spatial convolutional LSTM network for assessing drug addiction treatment Pairwise joint symmetric uncertainty based on macro-neighborhood entropy for heterogeneous feature selection Low-rank fused modality assisted magnetic resonance imaging reconstruction via an anatomical variation adaptive transformer LCF3D: A robust and real-time late-cascade fusion framework for 3D object detection in autonomous driving Test-time adaptive vision-language alignment for zero-shot group activity recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1