Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-04-04 DOI:10.1016/j.envsoft.2025.106457
Mateo Vélez-Hernández , Paul Muñoz , Esteban Samaniego , María José Merizalde , Rolando Célleri
{"title":"Advancing timely satellite precipitation for IMERG-ER using GOES-16 data and a U-net convolutional neural network modelling approach","authors":"Mateo Vélez-Hernández ,&nbsp;Paul Muñoz ,&nbsp;Esteban Samaniego ,&nbsp;María José Merizalde ,&nbsp;Rolando Célleri","doi":"10.1016/j.envsoft.2025.106457","DOIUrl":null,"url":null,"abstract":"<div><div>Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (&lt;3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"189 ","pages":"Article 106457"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001410","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Timely precipitation information is essential for water resources management and hazard monitoring. In regions with limited ground-based measurements, satellite precipitation products (SPPs) provide a valuable alternative, though data latency often creates an information gap for real-time applications. This study addresses the latency gap of IMERG-ER using a U-Net-based Convolutional Neural Network (CNN) model, trained with near-instantaneous GOES-16 satellite data. The optimal combination of GOES-16 infrared bands (6.2, 6.9, 7.3, 8.4, and 11.2 μm) was determined to enhance IMERG-ER predictions. The CNN model's performance, evaluated with both quantitative and qualitative metrics, showed an RMSE of 0.46 mm/h, a Pearson's correlation coefficient of 0.60, and a Critical Success Index of 0.53. The model performed well in predicting low-intensity precipitation (<3 mm/h), which occurs 97 % of the time, but faced challenges with high-intensity events due to data imbalance. These findings advance the use of SPPs and deep learning for operational hydrology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用GOES-16数据和U-net卷积神经网络建模方法推进imerger的及时卫星降水
及时的降水信息对水资源管理和灾害监测至关重要。在地面测量有限的地区,卫星降水产品(SPPs)提供了一个有价值的替代方案,尽管数据延迟通常会造成实时应用的信息差距。本研究使用基于u - net的卷积神经网络(CNN)模型解决了imerger的延迟差距,该模型使用近瞬时GOES-16卫星数据进行训练。确定了GOES-16红外波段(6.2、6.9、7.3、8.4和11.2 μm)的最佳组合,以增强imerger预测。CNN模型的性能,通过定量和定性指标进行评估,显示RMSE为0.46 mm/h, Pearson相关系数为0.60,关键成功指数为0.53。该模型在预测低强度降水(< 3mm /h)方面表现良好,但由于数据不平衡,在预测高强度降水时面临挑战。这些发现促进了spp和深度学习在业务水文学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
What drives reservoir infrastructure upgrade decisions under deep uncertainty? Effects of rising CO2 concentrations on water dynamics and yields for C3 and C4 crops under both irrigated and dryland conditions in the Texas High Plains Visualization of Urban Digital Twins on the web with attribute-driven adaptive tiling An ensemble method for integrating rainfall forecast products based on average mutual information decomposition Blockchain-based carbon informatics for multiple stakeholders using spatial-temporal analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1