Classical Preoptimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications.

IF 5.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Chemical Theory and Computation Pub Date : 2025-04-22 Epub Date: 2025-04-09 DOI:10.1021/acs.jctc.5c00150
J Wayne Mullinax, Panagiotis G Anastasiou, Jeffrey Larson, Sophia E Economou, Norm M Tubman
{"title":"Classical Preoptimization Approach for ADAPT-VQE: Maximizing the Potential of High-Performance Computing Resources to Improve Quantum Simulation of Chemical Applications.","authors":"J Wayne Mullinax, Panagiotis G Anastasiou, Jeffrey Larson, Sophia E Economou, Norm M Tubman","doi":"10.1021/acs.jctc.5c00150","DOIUrl":null,"url":null,"abstract":"<p><p>The ADAPT-VQE algorithm is a promising method for generating a compact ansatz based on derivatives of the underlying cost function, and it yields accurate predictions of electronic energies for molecules. In this work, we report the implementation and performance of ADAPT-VQE with our recently developed sparse wave function circuit solver (SWCS) in terms of accuracy and efficiency for molecular systems with up to 52 spin orbitals. The SWCS can be tuned to balance computational cost and accuracy, which extends the application of ADAPT-VQE for molecular electronic structure calculations to larger basis sets and a larger number of qubits. Using this tunable feature of the SWCS, we propose an alternative optimization procedure for ADAPT-VQE to reduce the computational cost of the optimization. By preoptimizing a quantum simulation with a parametrized ansatz generated with ADAPT-VQE/SWCS, we aim to utilize the power of classical high-performance computing in order to minimize the work required on noisy intermediate-scale quantum hardware, which offers a promising path toward demonstrating quantum advantage for chemical applications.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"4006-4015"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.5c00150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ADAPT-VQE algorithm is a promising method for generating a compact ansatz based on derivatives of the underlying cost function, and it yields accurate predictions of electronic energies for molecules. In this work, we report the implementation and performance of ADAPT-VQE with our recently developed sparse wave function circuit solver (SWCS) in terms of accuracy and efficiency for molecular systems with up to 52 spin orbitals. The SWCS can be tuned to balance computational cost and accuracy, which extends the application of ADAPT-VQE for molecular electronic structure calculations to larger basis sets and a larger number of qubits. Using this tunable feature of the SWCS, we propose an alternative optimization procedure for ADAPT-VQE to reduce the computational cost of the optimization. By preoptimizing a quantum simulation with a parametrized ansatz generated with ADAPT-VQE/SWCS, we aim to utilize the power of classical high-performance computing in order to minimize the work required on noisy intermediate-scale quantum hardware, which offers a promising path toward demonstrating quantum advantage for chemical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADAPT-VQE的经典预优化方法:最大化高性能计算资源的潜力以改进化学应用的量子模拟。
ADAPT-VQE算法是一种很有前途的方法,可以基于潜在成本函数的导数生成紧凑的ansatz,并且它可以准确地预测分子的电子能量。在这项工作中,我们报告了我们最近开发的稀疏波函数电路求解器(SWCS)在具有多达52个自旋轨道的分子系统中的准确性和效率方面的实现和性能。SWCS可以调整以平衡计算成本和精度,从而将ADAPT-VQE用于分子电子结构计算的应用扩展到更大的基集和更多的量子位。利用SWCS的这种可调特性,我们提出了一种可选的adaptive - vqe优化过程,以减少优化的计算成本。通过使用ADAPT-VQE/SWCS生成的参数化ansatz预优化量子模拟,我们的目标是利用经典高性能计算的力量,以最大限度地减少噪声中等规模量子硬件所需的工作,这为展示量子优势在化学应用中的前景提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
期刊最新文献
Performance of Different Spin-Orbit Operators for the Splitting of 4f-Multiplets in Trivalent Lanthanides. Issue Editorial Masthead Issue Publication Information Modeling the Impact of Protein Mutations on Chemical Reactions for Biochemistry, Protein Engineering, and Drug Discovery. Catalytic Asymmetry Dictating Emergent Dynamics and Self-Assembly in Janus Dimer Pairs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1