Semiclassical Approach to Computing Vibrationally Resolved Ionization Cross Sections for Molecular Nitrogen.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-04-17 Epub Date: 2025-04-09 DOI:10.1021/acs.jpca.4c08475
Paul E Adamson, Darryl J Watkins, Michael V Pak, A Stephen Richardson, Ian M Rittersdorf, Stephen B Swanekamp
{"title":"Semiclassical Approach to Computing Vibrationally Resolved Ionization Cross Sections for Molecular Nitrogen.","authors":"Paul E Adamson, Darryl J Watkins, Michael V Pak, A Stephen Richardson, Ian M Rittersdorf, Stephen B Swanekamp","doi":"10.1021/acs.jpca.4c08475","DOIUrl":null,"url":null,"abstract":"<p><p>A semiclassical model based on the Gryzinski theory is used to compute vibrationally resolved electron-impact ionization cross sections for molecular nitrogen. This model extends the approach used by Wünderlich for molecular hydrogen and its isotopomeres. The multireference configuration interaction (MRCI) method in Molpro is used with complete active space self-consistent field reference wave functions to compute potential energy curves (PECs) and electronic wave functions for several states of interest. Nuclear wave functions and vibrational energy levels are computed from the MRCI PECs using the Fourier grid Hamiltonian method. The target orbital electron kinetic energies, Franck-Condon factors, and transition energies are parameters for the semiclassical model and are calculated directly from the computed electronic and nuclear wave functions and vibrational energy levels. The target electron kinetic energies are computed as the expectation value of the one-electron kinetic energy operator for the product of the appropriate nuclear vibrational wave function and the MRCI natural orbital for a particular state-to-state ionization process. From the fully vibrationally resolved ionization cross sections, lumped and total cross sections are calculated by summing the partial cross sections over the closure relationship of the Franck-Condon theory.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"3411-3422"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08475","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A semiclassical model based on the Gryzinski theory is used to compute vibrationally resolved electron-impact ionization cross sections for molecular nitrogen. This model extends the approach used by Wünderlich for molecular hydrogen and its isotopomeres. The multireference configuration interaction (MRCI) method in Molpro is used with complete active space self-consistent field reference wave functions to compute potential energy curves (PECs) and electronic wave functions for several states of interest. Nuclear wave functions and vibrational energy levels are computed from the MRCI PECs using the Fourier grid Hamiltonian method. The target orbital electron kinetic energies, Franck-Condon factors, and transition energies are parameters for the semiclassical model and are calculated directly from the computed electronic and nuclear wave functions and vibrational energy levels. The target electron kinetic energies are computed as the expectation value of the one-electron kinetic energy operator for the product of the appropriate nuclear vibrational wave function and the MRCI natural orbital for a particular state-to-state ionization process. From the fully vibrationally resolved ionization cross sections, lumped and total cross sections are calculated by summing the partial cross sections over the closure relationship of the Franck-Condon theory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算分子氮振动分辨电离截面的半经典方法。
采用基于Gryzinski理论的半经典模型计算了分子氮的振动分辨电子碰撞电离截面。这个模型扩展了w nderlich用于氢分子及其同位素体的方法。Molpro中的多参考配置相互作用(MRCI)方法与完整的有源空间自一致场参考波函数一起用于计算几种感兴趣状态的势能曲线(PECs)和电子波函数。利用傅里叶网格哈密顿方法从核磁共振ci PECs计算核波函数和振动能级。目标轨道电子动能、frank - condon因子和跃迁能是半经典模型的参数,直接由计算得到的电子波函数和核波函数以及振动能级计算得到。目标电子动能计算为一个特定的状态到状态电离过程中适当的核振动波函数与MRCI自然轨道乘积的单电子动能算符的期望值。从完全振动分解的电离截面出发,通过对frank - condon理论闭合关系上的部分截面求和,计算出了总截面和总截面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Bonding Nature of Diabatic Representation in Nonlinear Hydrogen Atom Transfer Reactions. Covalency of the Strong Br···N Halogen Bonds in Neutral and Ionic Complexes. Issue Editorial Masthead Issue Publication Information A Review of 2025 at The Journal of Physical Chemistry A
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1