Strategic Design of Novel Zinc and Cadmium Metal-Organic Frameworks for Enhanced, Reversible, and Multi-Phase Iodine Sequestration

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2025-04-08 DOI:10.1002/smtd.202500101
Ketan Maru, Sarita Kalla, Ritambhara Jangir
{"title":"Strategic Design of Novel Zinc and Cadmium Metal-Organic Frameworks for Enhanced, Reversible, and Multi-Phase Iodine Sequestration","authors":"Ketan Maru,&nbsp;Sarita Kalla,&nbsp;Ritambhara Jangir","doi":"10.1002/smtd.202500101","DOIUrl":null,"url":null,"abstract":"<p>Radioactive iodineisotopes (<sup>129</sup>I and <sup>131</sup>I), generated duringnuclear fission, persist in gaseous and aqueous phases due to their volatilityand bioaccumulation, posing severe health risks. Multiphase iodine removalremains challenging due to the low efficiency of conventional materials, especially in aqueous media where high polarity hinders effective adsorption. Herein, a novel bidentate precursor, 4, 4′-(((2, 3, 5, 6-tetramethyl-1, 4-phenylene)bis(methylene))bis(azanediyl))dibenzoicacid (PMBADH₂), was strategically designed having two -NH linkages to enhance interactions withiodine in the phases. Using PMBADH<sub>2</sub>, Two new isostructural metal-organic frameworks(MOFs), {[Zn₂(PMBADH₂)₄(DMF)₂]·4DMF}<sub>n</sub> (SVNIT-1) and {[Cd₂(PMBADH₂)₄(DMF)₂]·4DMF}<sub>n</sub> (SVNIT-2), were synthesized. The MOFs werealso prepared on a gram scale to enhance practical applicability. Comprehensive characterization of both MOFs was performed using SCXRD, PXRD, FTIR, XPS, BET, and TGA. Both MOFs exhibited outstanding iodine uptake across vapor, organic, and aqueous phases. SVNIT-1 achieved capacities of 6.5 g g<sup>−1</sup> (vapor), 2.8 g g<sup>−1</sup> (organic), and 2.5 g g<sup>−1</sup> (aqueous, including seawater), while SVNIT-2 showed comparable values of 6.1, 2.6, and 2.4 g g<sup>−1</sup>, respectively. Extensive studies on desorption, recyclability, and stability confirmed the robustness and reusability of thesematerials. Mechanistic studies using FTIR, PXRD, Raman, UV-DRS, XPS, and ESR highlighted the pivotal role of NH linkages in promoting iodine adsorption via strong hostguest interactions.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 8","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202500101","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Radioactive iodineisotopes (129I and 131I), generated duringnuclear fission, persist in gaseous and aqueous phases due to their volatilityand bioaccumulation, posing severe health risks. Multiphase iodine removalremains challenging due to the low efficiency of conventional materials, especially in aqueous media where high polarity hinders effective adsorption. Herein, a novel bidentate precursor, 4, 4′-(((2, 3, 5, 6-tetramethyl-1, 4-phenylene)bis(methylene))bis(azanediyl))dibenzoicacid (PMBADH₂), was strategically designed having two -NH linkages to enhance interactions withiodine in the phases. Using PMBADH2, Two new isostructural metal-organic frameworks(MOFs), {[Zn₂(PMBADH₂)₄(DMF)₂]·4DMF}n (SVNIT-1) and {[Cd₂(PMBADH₂)₄(DMF)₂]·4DMF}n (SVNIT-2), were synthesized. The MOFs werealso prepared on a gram scale to enhance practical applicability. Comprehensive characterization of both MOFs was performed using SCXRD, PXRD, FTIR, XPS, BET, and TGA. Both MOFs exhibited outstanding iodine uptake across vapor, organic, and aqueous phases. SVNIT-1 achieved capacities of 6.5 g g−1 (vapor), 2.8 g g−1 (organic), and 2.5 g g−1 (aqueous, including seawater), while SVNIT-2 showed comparable values of 6.1, 2.6, and 2.4 g g−1, respectively. Extensive studies on desorption, recyclability, and stability confirmed the robustness and reusability of thesematerials. Mechanistic studies using FTIR, PXRD, Raman, UV-DRS, XPS, and ESR highlighted the pivotal role of NH linkages in promoting iodine adsorption via strong hostguest interactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型锌镉金属有机框架强化、可逆和多相碘隔离的策略设计。
核裂变过程中产生的放射性碘同位素(129I和131I)由于其挥发性和生物蓄积性,持续存在于气相和水相中,构成严重的健康风险。由于传统材料的效率低,多相除碘仍然具有挑战性,特别是在水介质中,高极性阻碍了有效的吸附。本文设计了一种新的双齿前体,4,4 '-((2,3,5,6 -四甲基- 1,4 -苯基)双(亚甲基)双(氮二基))二苯甲酸(PMBADH₂),该前体具有两个- nh键,以增强相中碘的相互作用。以PMBADH2为原料,合成了两种新型同构金属有机骨架(mfs): {[Zn₂(PMBADH₂)₄(DMF)₂]·4DMF}n (svnit1)和{[Cd₂(PMBADH₂)₄(DMF)₂]·4DMF}n (svnit2)。为了提高MOFs的实用性,还以克为单位制备了MOFs。利用SCXRD、PXRD、FTIR、XPS、BET和TGA对两种mof进行了综合表征。两种MOFs在蒸汽相、有机相和水相均表现出出色的碘吸收率。svnit1的容量为6.5 g g-1(蒸汽)、2.8 g g-1(有机)和2.5 g g-1(含水,包括海水),而svnit2的容量分别为6.1、2.6和2.4 g g-1。对解吸性、可回收性和稳定性的广泛研究证实了这些材料的坚固性和可重复使用性。利用FTIR、PXRD、Raman、UV-DRS、XPS和ESR进行的机理研究强调了NH键通过强主客体相互作用促进碘吸附的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Dual-function, Reusable, and Flexible Thermal Interface for Kinetic Monitoring of In Vitro Bioassays. A Method for Oscillation-Free Dynamic IR Compensation During Potentiostatic Electrolyses. Organelle Sorting and Proteomic Analysis to Identify Proteins Involved in the Uptake and Intracellular Trafficking of Nanoparticles. Self-Cleaning Superhydrophilic Membranes via Eco-Friendly Modification for High Flux Oil-water Separation. An Ammonium Polyphosphate Nanoparticle-Based Flame-Retardant Separator Enhances Safety of Lithium-Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1