Development of a Decision Support System for Predicting the Evolution of Epidemics Using Open-Source Software Tools.

Myrto Papakonstantinou, Emmanouil Zoulias, Parisis Gallos, John Mantas
{"title":"Development of a Decision Support System for Predicting the Evolution of Epidemics Using Open-Source Software Tools.","authors":"Myrto Papakonstantinou, Emmanouil Zoulias, Parisis Gallos, John Mantas","doi":"10.3233/SHTI250126","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a Decision Support System to predict epidemic trends in Greece using Open-Source software and machine learning algorithms. The system uses data from OurWorldData.org on COVID-19 from early 2020 to December 2022. We assess the accuracy of five forecasting algorithms: Linear Regression, Back Propagation (BP), Long Short-Term Memory (LSTM), ARIMA, and Prophet. By evaluating correlation, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), we identify the ARIMA model as the most effective for this context. Comparative analysis highlights the system's predictive reliability in Greek COVID-19 trends and suggests implications for broader epidemic forecasting applications.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"323 ","pages":"429-433"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a Decision Support System to predict epidemic trends in Greece using Open-Source software and machine learning algorithms. The system uses data from OurWorldData.org on COVID-19 from early 2020 to December 2022. We assess the accuracy of five forecasting algorithms: Linear Regression, Back Propagation (BP), Long Short-Term Memory (LSTM), ARIMA, and Prophet. By evaluating correlation, Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE), we identify the ARIMA model as the most effective for this context. Comparative analysis highlights the system's predictive reliability in Greek COVID-19 trends and suggests implications for broader epidemic forecasting applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于开源软件工具的流行病演变预测决策支持系统的开发
本研究提出了一个决策支持系统,使用开源软件和机器学习算法来预测希腊的流行病趋势。该系统使用了OurWorldData.org从2020年初到2022年12月的COVID-19数据。我们评估了五种预测算法的准确性:线性回归、反向传播(BP)、长短期记忆(LSTM)、ARIMA和Prophet。通过评估相关性、平均绝对误差(MAE)、均方误差(MSE)和均方根误差(RMSE),我们确定ARIMA模型在这种情况下是最有效的。对比分析突出了该系统对希腊COVID-19趋势的预测可靠性,并对更广泛的流行病预测应用提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Digital Evaluation for Inter-Professional Education: A PROLIFERATE_AI Mixed-Methods Analysis. A Personalised Digital Health Intervention for Prediabetes. Extreme Heat and Emergency Department Presentations for Circulatory and Respiratory Conditions: A 5-Year Study in Two Large Hospitals in Australia. Delivering Digital Health Education to Undergraduates Using Virtual Hospital Education Resources. cpThrive: A Story of Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1