AI Driven Wearables and Large Language Models for Student Well-Being: A Preliminary Study.

Arfan Ahmed, Sarah Aziz, Alaa Abd-Alrazaq, Rawan Alsaad, Javaid Sheikh
{"title":"AI Driven Wearables and Large Language Models for Student Well-Being: A Preliminary Study.","authors":"Arfan Ahmed, Sarah Aziz, Alaa Abd-Alrazaq, Rawan Alsaad, Javaid Sheikh","doi":"10.3233/SHTI250044","DOIUrl":null,"url":null,"abstract":"<p><p>This short communication presents preliminary findings on the integration of Large Language Models (LLMs) and wearable technology to generate personalized recommendations aimed at enhancing student well-being and academic performance. By analyzing diverse student data profiles, including metrics from wearable devices and qualitative feedback from academic reports, we conducted sentiment analysis to assess students' emotional states. The results indicate that LLMs can effectively process and analyze textual data, providing actionable insights into student engagement and areas needing improvement. This approach demonstrates the potential of LLMs in educational settings, offering a more nuanced understanding of student needs compared to traditional methods.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"323 ","pages":"38-39"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This short communication presents preliminary findings on the integration of Large Language Models (LLMs) and wearable technology to generate personalized recommendations aimed at enhancing student well-being and academic performance. By analyzing diverse student data profiles, including metrics from wearable devices and qualitative feedback from academic reports, we conducted sentiment analysis to assess students' emotional states. The results indicate that LLMs can effectively process and analyze textual data, providing actionable insights into student engagement and areas needing improvement. This approach demonstrates the potential of LLMs in educational settings, offering a more nuanced understanding of student needs compared to traditional methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能驱动的可穿戴设备和大型语言模型对学生健康的影响:初步研究。
这篇简短的交流介绍了整合大型语言模型(llm)和可穿戴技术的初步发现,以产生个性化的建议,旨在提高学生的幸福感和学习成绩。通过分析各种学生数据档案,包括来自可穿戴设备的指标和学术报告的定性反馈,我们进行了情绪分析,以评估学生的情绪状态。结果表明,法学硕士可以有效地处理和分析文本数据,为学生参与和需要改进的领域提供可操作的见解。这种方法展示了法学硕士在教育环境中的潜力,与传统方法相比,它提供了对学生需求更细致入微的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Digital Evaluation for Inter-Professional Education: A PROLIFERATE_AI Mixed-Methods Analysis. A Personalised Digital Health Intervention for Prediabetes. Extreme Heat and Emergency Department Presentations for Circulatory and Respiratory Conditions: A 5-Year Study in Two Large Hospitals in Australia. Delivering Digital Health Education to Undergraduates Using Virtual Hospital Education Resources. cpThrive: A Story of Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1