Using Statistical Learning to Investigate the Characteristics that Contribute to Extended Hospital Stays After Testicular Cancer Surgery.

Francesca D'Isa, Mimmo de Francesco, Maria Triassi, Andrea Fidecicchi
{"title":"Using Statistical Learning to Investigate the Characteristics that Contribute to Extended Hospital Stays After Testicular Cancer Surgery.","authors":"Francesca D'Isa, Mimmo de Francesco, Maria Triassi, Andrea Fidecicchi","doi":"10.3233/SHTI250096","DOIUrl":null,"url":null,"abstract":"<p><p>Testicular cancer (TC) is a relatively rare but highly treatable malignancy that originates in the germ cells of the testicles. It primarily affects young men, particularly those between the ages of 15 and 35, though it can occur at any age. The most common histological subtypes are seminoma and non-seminomatous germ cell tumors (NSGCTs), the latter including embryonal carcinoma, yolk sac tumor, choriocarcinoma, and teratoma. The length of hospital stay (LOS) following surgery is a crucial indicator of clinical outcomes and resource utilization. This study examines the length of stay (LOS) after testicles cancer surgery at the Antonio Cardarelli Hospital in Naples, Italy, using a statistical learning technique. It builds on previous studies on the causes of extended hospital stays in surgical oncology. The main findings provide a chance to enhance patient care and quality by illustrating how the clinical and organizational aspects of the surgical technique impact hospital stays.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"323 ","pages":"285-289"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Testicular cancer (TC) is a relatively rare but highly treatable malignancy that originates in the germ cells of the testicles. It primarily affects young men, particularly those between the ages of 15 and 35, though it can occur at any age. The most common histological subtypes are seminoma and non-seminomatous germ cell tumors (NSGCTs), the latter including embryonal carcinoma, yolk sac tumor, choriocarcinoma, and teratoma. The length of hospital stay (LOS) following surgery is a crucial indicator of clinical outcomes and resource utilization. This study examines the length of stay (LOS) after testicles cancer surgery at the Antonio Cardarelli Hospital in Naples, Italy, using a statistical learning technique. It builds on previous studies on the causes of extended hospital stays in surgical oncology. The main findings provide a chance to enhance patient care and quality by illustrating how the clinical and organizational aspects of the surgical technique impact hospital stays.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用统计学习方法探讨睾丸癌手术后延长住院时间的因素。
睾丸癌(TC)是一种相对罕见但可治疗的恶性肿瘤,起源于睾丸的生殖细胞。它主要影响年轻男性,尤其是年龄在15到35岁之间的男性,尽管它可以发生在任何年龄。最常见的组织学亚型是精原细胞瘤和非精原细胞生殖细胞瘤(nsgct),后者包括胚胎癌、卵黄囊瘤、绒毛膜癌和畸胎瘤。术后住院时间(LOS)是临床疗效和资源利用的重要指标。本研究使用统计学习技术,考察了意大利那不勒斯Antonio Cardarelli医院睾丸癌手术后的住院时间(LOS)。它建立在以前对肿瘤外科住院时间延长的原因的研究基础上。主要研究结果提供了一个机会,通过说明临床和组织方面的手术技术如何影响住院时间,以提高病人的护理和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing Digital Evaluation for Inter-Professional Education: A PROLIFERATE_AI Mixed-Methods Analysis. A Personalised Digital Health Intervention for Prediabetes. Extreme Heat and Emergency Department Presentations for Circulatory and Respiratory Conditions: A 5-Year Study in Two Large Hospitals in Australia. Delivering Digital Health Education to Undergraduates Using Virtual Hospital Education Resources. cpThrive: A Story of Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1