Pluralistic Salient Object Detection

Xuelu Feng;Yunsheng Li;Dongdong Chen;Chunming Qiao;Junsong Yuan;Lu Yuan;Gang Hua
{"title":"Pluralistic Salient Object Detection","authors":"Xuelu Feng;Yunsheng Li;Dongdong Chen;Chunming Qiao;Junsong Yuan;Lu Yuan;Gang Hua","doi":"10.1109/TIP.2025.3557563","DOIUrl":null,"url":null,"abstract":"We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image. Unlike conventional SOD methods that produce a single segmentation mask for salient objects, this new setting recognizes the inherent complexity of real-world images, comprising multiple objects, and the ambiguity in defining salient objects due to different user intentions. To study this task, we present two new SOD datasets “DUTS-MM” and “DUTS-MQ”, along with newly designed evaluation metrics. DUTS-MM builds upon the DUTS dataset but enriches the ground-truth mask annotations from three aspects which 1) improves the mask quality especially for boundary and fine-grained structures; 2) alleviates the annotation inconsistency issue; and 3) provides multiple ground-truth masks for images with saliency ambiguity. DUTS-MQ consists of approximately 100K image-mask pairs with human-annotated preference scores, enabling the learning of real human preferences in measuring mask quality. Building upon these two datasets, we propose a simple yet effective pluralistic SOD baseline based on a Mixture-of-Experts (MOE) design. Equipped with two prediction heads, it simultaneously predicts multiple masks using different query prompts and predicts human preference scores for each mask candidate. Extensive experiments and analyses underscore the significance of our proposed datasets and affirm the effectiveness of our PSOD framework.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"2325-2337"},"PeriodicalIF":13.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960495/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce pluralistic salient object detection (PSOD), a novel task aimed at generating multiple plausible salient segmentation results for a given input image. Unlike conventional SOD methods that produce a single segmentation mask for salient objects, this new setting recognizes the inherent complexity of real-world images, comprising multiple objects, and the ambiguity in defining salient objects due to different user intentions. To study this task, we present two new SOD datasets “DUTS-MM” and “DUTS-MQ”, along with newly designed evaluation metrics. DUTS-MM builds upon the DUTS dataset but enriches the ground-truth mask annotations from three aspects which 1) improves the mask quality especially for boundary and fine-grained structures; 2) alleviates the annotation inconsistency issue; and 3) provides multiple ground-truth masks for images with saliency ambiguity. DUTS-MQ consists of approximately 100K image-mask pairs with human-annotated preference scores, enabling the learning of real human preferences in measuring mask quality. Building upon these two datasets, we propose a simple yet effective pluralistic SOD baseline based on a Mixture-of-Experts (MOE) design. Equipped with two prediction heads, it simultaneously predicts multiple masks using different query prompts and predicts human preference scores for each mask candidate. Extensive experiments and analyses underscore the significance of our proposed datasets and affirm the effectiveness of our PSOD framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元突出物体检测
我们引入了多元显著目标检测(PSOD),这是一种新的任务,旨在为给定的输入图像生成多个可信的显著分割结果。与传统的SOD方法(为显著目标生成单个分割掩码)不同,这种新设置识别了现实世界图像的固有复杂性,包括多个目标,以及由于不同用户意图而定义显著目标的模糊性。为了研究这项任务,我们提出了两个新的SOD数据集“dts - mm”和“dts - mq”,以及新设计的评估指标。DUTS- mm在DUTS数据集的基础上,从三个方面丰富了地基真值掩码注释,1)提高了掩码质量,特别是对边界和细粒度结构;2)缓解标注不一致问题;3)为具有显著模糊性的图像提供多个真值掩模。DUTS-MQ由大约100K具有人类注释偏好分数的图像掩码对组成,可以在测量掩码质量时学习真实的人类偏好。在这两个数据集的基础上,我们提出了一个简单而有效的基于混合专家(MOE)设计的多元SOD基线。它配备了两个预测头,使用不同的查询提示同时预测多个掩码,并预测每个掩码候选的人类偏好得分。大量的实验和分析强调了我们提出的数据集的重要性,并肯定了我们的PSOD框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reflectance Prediction-based Knowledge Distillation for Robust 3D Object Detection in Compressed Point Clouds. Implicit Neural Compression of Point Clouds. Token Calibration for Transformer-based Domain Adaptation. Task-Driven Underwater Image Enhancement via Hierarchical Semantic Refinement. Coupled Diffusion Posterior Sampling for Unsupervised Hyperspectral and Multispectral Images Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1