Uncertainty-Guided Refinement for Fine-Grained Salient Object Detection

Yao Yuan;Pan Gao;Qun Dai;Jie Qin;Wei Xiang
{"title":"Uncertainty-Guided Refinement for Fine-Grained Salient Object Detection","authors":"Yao Yuan;Pan Gao;Qun Dai;Jie Qin;Wei Xiang","doi":"10.1109/TIP.2025.3557562","DOIUrl":null,"url":null,"abstract":"Recently, salient object detection (SOD) methods have achieved impressive performance. However, salient regions predicted by existing methods usually contain unsaturated regions and shadows, which limits the model for reliable fine-grained predictions. To address this, we introduce the uncertainty guidance learning approach to SOD, intended to enhance the model’s perception of uncertain regions. Specifically, we design a novel Uncertainty Guided Refinement Attention Network (UGRAN), which incorporates three important components, i.e., the Multilevel Interaction Attention (MIA) module, the Scale Spatial-Consistent Attention (SSCA) module, and the Uncertainty Refinement Attention (URA) module. Unlike conventional methods dedicated to enhancing features, the proposed MIA facilitates the interaction and perception of multilevel features, leveraging the complementary characteristics among multilevel features. Then, through the proposed SSCA, the salient information across diverse scales within the aggregated features can be integrated more comprehensively and integrally. In the subsequent steps, we utilize the uncertainty map generated from the saliency prediction map to enhance the model’s perception capability of uncertain regions, generating a highly-saturated fine-grained saliency prediction map. Additionally, we devise an adaptive dynamic partition (ADP) mechanism to minimize the computational overhead of the URA module and improve the utilization of uncertainty guidance. Experiments on seven benchmark datasets demonstrate the superiority of the proposed UGRAN over the state-of-the-art methodologies. Codes will be released at <uri>https://github.com/I2-Multimedia-Lab/UGRAN</uri>","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"2301-2314"},"PeriodicalIF":13.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960487/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, salient object detection (SOD) methods have achieved impressive performance. However, salient regions predicted by existing methods usually contain unsaturated regions and shadows, which limits the model for reliable fine-grained predictions. To address this, we introduce the uncertainty guidance learning approach to SOD, intended to enhance the model’s perception of uncertain regions. Specifically, we design a novel Uncertainty Guided Refinement Attention Network (UGRAN), which incorporates three important components, i.e., the Multilevel Interaction Attention (MIA) module, the Scale Spatial-Consistent Attention (SSCA) module, and the Uncertainty Refinement Attention (URA) module. Unlike conventional methods dedicated to enhancing features, the proposed MIA facilitates the interaction and perception of multilevel features, leveraging the complementary characteristics among multilevel features. Then, through the proposed SSCA, the salient information across diverse scales within the aggregated features can be integrated more comprehensively and integrally. In the subsequent steps, we utilize the uncertainty map generated from the saliency prediction map to enhance the model’s perception capability of uncertain regions, generating a highly-saturated fine-grained saliency prediction map. Additionally, we devise an adaptive dynamic partition (ADP) mechanism to minimize the computational overhead of the URA module and improve the utilization of uncertainty guidance. Experiments on seven benchmark datasets demonstrate the superiority of the proposed UGRAN over the state-of-the-art methodologies. Codes will be released at https://github.com/I2-Multimedia-Lab/UGRAN
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定性引导下的细粒度突出物体精细化检测
近年来,显著目标检测(SOD)方法取得了令人瞩目的成绩。然而,现有方法预测的显著区域通常包含不饱和区域和阴影,这限制了模型进行可靠的细粒度预测。为了解决这个问题,我们将不确定性引导学习方法引入SOD,旨在增强模型对不确定区域的感知。具体而言,我们设计了一种新的不确定性引导细化注意网络(UGRAN),该网络包含三个重要组成部分,即多层次交互注意(MIA)模块、尺度空间一致注意(SSCA)模块和不确定性细化注意(URA)模块。与传统的增强特征的方法不同,本文提出的MIA促进了多层特征的交互和感知,利用了多层特征之间的互补特征。然后,通过所提出的SSCA,可以更全面、完整地整合聚合特征中不同尺度的显著信息。在接下来的步骤中,我们利用显著性预测图生成的不确定性图来增强模型对不确定区域的感知能力,生成高度饱和的细粒度显著性预测图。此外,我们设计了一种自适应动态分区(ADP)机制,以最大限度地减少URA模块的计算开销,提高不确定性制导的利用率。在七个基准数据集上的实验证明了所提出的UGRAN优于最先进的方法。代码将在https://github.com/I2-Multimedia-Lab/UGRAN上发布
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reflectance Prediction-based Knowledge Distillation for Robust 3D Object Detection in Compressed Point Clouds. Implicit Neural Compression of Point Clouds. Token Calibration for Transformer-based Domain Adaptation. Task-Driven Underwater Image Enhancement via Hierarchical Semantic Refinement. Coupled Diffusion Posterior Sampling for Unsupervised Hyperspectral and Multispectral Images Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1