{"title":"Disruptive Electrochromic Materials: Carbazole-Based Conjugated Polymers","authors":"Buket Bezgin Carbas*, ","doi":"10.1021/acsapm.4c03585","DOIUrl":null,"url":null,"abstract":"<p >Carbazole-based conjugated polymers are revolutionizing electrochromic technology and becoming indispensable materials for cutting-edge applications. These polymers showcase exceptional electrochromic capabilities, featuring high coloration efficiency, fast switching times, and outstanding stability, all tailored to their unique structure and doping levels. This review explores the innovative realm of EC conjugated polymers, highlighting the charge transport and photoconductive role of carbazole (Cz) as a main chain building block or subunit, making these materials ideal for use in smart windows, displays, and other optoelectronic devices. The resulting polymers of Cz demonstrate diverse electrochromic behaviors, ranging from transparent to green and blue color transitions, depending on the specific structure and doping level. The presence of carbazole units within the polymer backbone or as side chain substituents allows for further tuning of the material’s properties through chemical modification. Furthermore, our review emphasizes the importance of understanding the relationship between the molecular structures of the polymers and their resulting electrochromic properties. By systematically studying the effects of different substituents, linkage positions, and polymerization techniques, researchers can gain valuable insights into the design principles that govern the performance of these materials. This knowledge is crucial for the development of next-generation electrochromic devices with improved efficiency, durability, and functionality.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 7","pages":"4051–4076 4051–4076"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c03585","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbazole-based conjugated polymers are revolutionizing electrochromic technology and becoming indispensable materials for cutting-edge applications. These polymers showcase exceptional electrochromic capabilities, featuring high coloration efficiency, fast switching times, and outstanding stability, all tailored to their unique structure and doping levels. This review explores the innovative realm of EC conjugated polymers, highlighting the charge transport and photoconductive role of carbazole (Cz) as a main chain building block or subunit, making these materials ideal for use in smart windows, displays, and other optoelectronic devices. The resulting polymers of Cz demonstrate diverse electrochromic behaviors, ranging from transparent to green and blue color transitions, depending on the specific structure and doping level. The presence of carbazole units within the polymer backbone or as side chain substituents allows for further tuning of the material’s properties through chemical modification. Furthermore, our review emphasizes the importance of understanding the relationship between the molecular structures of the polymers and their resulting electrochromic properties. By systematically studying the effects of different substituents, linkage positions, and polymerization techniques, researchers can gain valuable insights into the design principles that govern the performance of these materials. This knowledge is crucial for the development of next-generation electrochromic devices with improved efficiency, durability, and functionality.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.