S-Vacancy-Rich 1T-TaS2/Cu2S Heterostructures on Cu Foil for Alkaline Hydrogen Evolution Reaction

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-03-28 DOI:10.1021/acsanm.5c00601
Huiqi Yang, Xinjian Liu, Jinbo He, Jinjian Yan, Yanliu Bai, Shougen Yin, Heng Li* and Hui Yan*, 
{"title":"S-Vacancy-Rich 1T-TaS2/Cu2S Heterostructures on Cu Foil for Alkaline Hydrogen Evolution Reaction","authors":"Huiqi Yang,&nbsp;Xinjian Liu,&nbsp;Jinbo He,&nbsp;Jinjian Yan,&nbsp;Yanliu Bai,&nbsp;Shougen Yin,&nbsp;Heng Li* and Hui Yan*,&nbsp;","doi":"10.1021/acsanm.5c00601","DOIUrl":null,"url":null,"abstract":"<p >Hydrogen evolution reaction (HER) plays a pivotal role in the electrochemical decomposition of water, necessitating the utilization of a catalyst that combines efficiency, durability, and cost-effectiveness. Due to their affordable cost and exceptional activity, transition metal dichalcogenides (TMDs) have garnered significant attention for their potential in HER. Unfortunately, the TMD materials are found inactive in alkaline conditions. Furthermore, for the direct application in HER, the substrates adopted in the synthesis of the TMD materials are still expensive or even precious metals, which restricts their industrial applications. We have successfully batch-synthesized layered 1T-TaS<sub>2</sub>/Cu<sub>2</sub>S heterostructures on industrial copper foil substrates through a simple chemical vapor deposition method. The growth temperature allows convenient control of the concentration of S vacancies in 1T-TaS<sub>2</sub>, providing relatively high HER performance in alkaline electrolyte; it exhibits an overpotential of 144 mV. As reported, the performance of 2H-phase TMDs in HER is far from satisfactory due to the inert base planes. Here, utilizing the same approach, we achieved the synthesis of 2H-MoS<sub>2</sub>/Cu<sub>2</sub>S and 2H-WS<sub>2</sub>/Cu<sub>2</sub>S heterostructures, with comparable overpotentials of 169 and 177 mV, respectively, illustrating the universality of the method and HER applications. In addition, its easy availability and low usage price make the industrial-level application more practical.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 14","pages":"7243–7255 7243–7255"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00601","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen evolution reaction (HER) plays a pivotal role in the electrochemical decomposition of water, necessitating the utilization of a catalyst that combines efficiency, durability, and cost-effectiveness. Due to their affordable cost and exceptional activity, transition metal dichalcogenides (TMDs) have garnered significant attention for their potential in HER. Unfortunately, the TMD materials are found inactive in alkaline conditions. Furthermore, for the direct application in HER, the substrates adopted in the synthesis of the TMD materials are still expensive or even precious metals, which restricts their industrial applications. We have successfully batch-synthesized layered 1T-TaS2/Cu2S heterostructures on industrial copper foil substrates through a simple chemical vapor deposition method. The growth temperature allows convenient control of the concentration of S vacancies in 1T-TaS2, providing relatively high HER performance in alkaline electrolyte; it exhibits an overpotential of 144 mV. As reported, the performance of 2H-phase TMDs in HER is far from satisfactory due to the inert base planes. Here, utilizing the same approach, we achieved the synthesis of 2H-MoS2/Cu2S and 2H-WS2/Cu2S heterostructures, with comparable overpotentials of 169 and 177 mV, respectively, illustrating the universality of the method and HER applications. In addition, its easy availability and low usage price make the industrial-level application more practical.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜箔上富s空位的1T-TaS2/Cu2S异质结构
析氢反应(HER)在水的电化学分解中起着关键作用,因此需要一种兼具效率、耐用性和成本效益的催化剂。由于其低廉的成本和特殊的活性,过渡金属二硫族化合物(TMDs)因其在HER中的潜力而引起了人们的极大关注。不幸的是,TMD材料在碱性条件下没有活性。此外,为了直接应用于HER,合成TMD材料所采用的衬底仍然是昂贵的甚至是贵金属,这限制了其工业应用。通过简单的化学气相沉积方法,我们成功地在工业铜箔衬底上批量合成了层状的1T-TaS2/Cu2S异质结构。生长温度可以方便地控制1T-TaS2中S空位的浓度,在碱性电解质中提供相对较高的HER性能;其过电位为144mv。据报道,由于基面惰性,2h相tmd在HER中的性能远不能令人满意。利用相同的方法,我们合成了2H-MoS2/Cu2S和2H-WS2/Cu2S异质结构,过电位分别为169和177 mV,说明了该方法的普遍性和HER应用。此外,其易于获得和低廉的使用价格使其在工业层面的应用更具实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Publication Information Issue Publication Information Issue Editorial Masthead Resistive Switching and Synapse Properties of Bilayered CuO|MAPbI3 Nanometer-Thick Films Hard Mask Strategies in Nanoscale Patterning of Mg-Based Oxide Semiconductors: Implications for Advanced Device Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1