Design of plastic waste chemical recycling process considering uncertainty

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2025-04-03 DOI:10.1016/j.compchemeng.2025.109128
Zhifei Yuliu, Yuqing Luo, Marianthi G. Ierapetritou
{"title":"Design of plastic waste chemical recycling process considering uncertainty","authors":"Zhifei Yuliu,&nbsp;Yuqing Luo,&nbsp;Marianthi G. Ierapetritou","doi":"10.1016/j.compchemeng.2025.109128","DOIUrl":null,"url":null,"abstract":"<div><div>The selection of mixed plastic waste recycling technologies directly influences product distribution and thus the overall process economics. This study presents an integrated chemical recycling process that combines pyrolysis, hydrogenolysis, and hydrocracking to transform plastic waste directly into high-value fuel products, eliminating the need for further upgrading. A mixed-integer nonlinear programming model is formulated to consider the selection of reaction pathways considering fuel properties to ensure compliance with product specifications. Robust optimization is used to incorporate the effect of fuel property and economic uncertainty on the process design. Under nominal conditions, the optimized chemical recycling process demonstrates strong economic performance with a unit net present value of $366/t plastic waste. Different levels of conservatism are considered to account for uncertainty. The optimized process shows a robust performance by leveraging different combinations of depolymerization technologies and adjusting the product portfolio.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"199 ","pages":"Article 109128"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425001322","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The selection of mixed plastic waste recycling technologies directly influences product distribution and thus the overall process economics. This study presents an integrated chemical recycling process that combines pyrolysis, hydrogenolysis, and hydrocracking to transform plastic waste directly into high-value fuel products, eliminating the need for further upgrading. A mixed-integer nonlinear programming model is formulated to consider the selection of reaction pathways considering fuel properties to ensure compliance with product specifications. Robust optimization is used to incorporate the effect of fuel property and economic uncertainty on the process design. Under nominal conditions, the optimized chemical recycling process demonstrates strong economic performance with a unit net present value of $366/t plastic waste. Different levels of conservatism are considered to account for uncertainty. The optimized process shows a robust performance by leveraging different combinations of depolymerization technologies and adjusting the product portfolio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑不确定性的废塑料化工回收工艺设计
混合塑料废物回收技术的选择直接影响产品分配,从而影响整个过程的经济效益。本研究提出了一种结合热解、氢解和加氢裂化的综合化学回收工艺,将塑料废物直接转化为高价值的燃料产品,无需进一步升级。建立了混合整数非线性规划模型,考虑了燃料特性对反应路径的选择,以保证符合产品规格。采用鲁棒优化方法,综合考虑燃料特性和经济不确定性对工艺设计的影响。在名义条件下,优化后的化学回收工艺表现出较强的经济效益,单位净现值为366美元/吨塑料废物。不同程度的保守主义被认为可以解释不确定性。通过不同的解聚技术组合和产品组合的调整,优化后的工艺表现出良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Safe reinforcement learning via adaptive robust model predictive shielding Study on explosion characteristics of premixed gas influenced by magnetic field based on product analysis Editorial Board A stability-oriented stochastic optimization strategy for refinery scheduling during unit shutdowns A fairness-guided supply chain framework for polyester production from biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1