In situ-engineered interfaces in copper oxynitride (CuxOyNz) systems with synergistic properties for photocatalytic H2 production and N2 fixation applications†

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Chemistry C Pub Date : 2025-03-14 DOI:10.1039/D4TC05394J
Mithun Prakash Ravikumar, Toan-Anh Quach, Bharagav Urupalli, Mamatha Kumari Murikinati, Shankar Muthukonda Venkatakrishnan, Trong-On Do and Sakar Mohan
{"title":"In situ-engineered interfaces in copper oxynitride (CuxOyNz) systems with synergistic properties for photocatalytic H2 production and N2 fixation applications†","authors":"Mithun Prakash Ravikumar, Toan-Anh Quach, Bharagav Urupalli, Mamatha Kumari Murikinati, Shankar Muthukonda Venkatakrishnan, Trong-On Do and Sakar Mohan","doi":"10.1039/D4TC05394J","DOIUrl":null,"url":null,"abstract":"<p >In this study, an atypical copper oxynitride (Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small>) system was synthesized with tunable Cu–O–N compositions. Structural analyses using X-ray diffraction, Rietveld refinement, micro-Raman, and high-resolution transmission electron microscopy confirmed the presence of Cu–O, Cu–N, and metallic Cu phases in the Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small> system. Physicochemical investigations revealed the distinct properties of O<small><sub>rich</sub></small>-, N<small><sub>rich</sub></small>-, and Cu<small><sub>rich</sub></small>–Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small> systems. The O<small><sub>rich</sub></small>–Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small> system exhibited enhanced stability in photocatalytic reactions, while the N<small><sub>rich</sub></small>–Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small> system displayed a broader optical response due to a lower bandgap energy compared to pure-CuO. The Cu<small><sub>rich</sub></small>–Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small> system, with its meta-stable Cu–N lattice, formed a plasmonic ohmic junction, facilitating efficient charge transfer and leading to enhanced photocatalytic activities. The photocatalytic dye degradation (in %), H<small><sub>2</sub></small> evolution (in μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>), and NH<small><sub>3</sub></small> formation (in μmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>) over the O<small><sub>rich</sub></small>–Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small> system (∼95/963.6/495.8) were found to be superior compared to those over the N<small><sub>rich</sub></small>–Cu<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small>N<small><sub><em>z</em></sub></small> (∼73/741.8/435.4) and bare oxide (∼62/418.3/270.2) systems. Unlike conventional bare or N-doped copper oxide materials, the synthesized copper oxynitride systems demonstrated synergistic properties, showing organized interactions among oxide, nitride, and metallic components. This research paves the way for a better understanding of the formation mechanism of atypical unary metal oxynitride systems and highlights their unique features as an emerging class of materials for energy and environmental applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 15","pages":" 7707-7725"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05394j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an atypical copper oxynitride (CuxOyNz) system was synthesized with tunable Cu–O–N compositions. Structural analyses using X-ray diffraction, Rietveld refinement, micro-Raman, and high-resolution transmission electron microscopy confirmed the presence of Cu–O, Cu–N, and metallic Cu phases in the CuxOyNz system. Physicochemical investigations revealed the distinct properties of Orich-, Nrich-, and Curich–CuxOyNz systems. The Orich–CuxOyNz system exhibited enhanced stability in photocatalytic reactions, while the Nrich–CuxOyNz system displayed a broader optical response due to a lower bandgap energy compared to pure-CuO. The Curich–CuxOyNz system, with its meta-stable Cu–N lattice, formed a plasmonic ohmic junction, facilitating efficient charge transfer and leading to enhanced photocatalytic activities. The photocatalytic dye degradation (in %), H2 evolution (in μmol g−1 h−1), and NH3 formation (in μmol g−1 h−1) over the Orich–CuxOyNz system (∼95/963.6/495.8) were found to be superior compared to those over the Nrich–CuxOyNz (∼73/741.8/435.4) and bare oxide (∼62/418.3/270.2) systems. Unlike conventional bare or N-doped copper oxide materials, the synthesized copper oxynitride systems demonstrated synergistic properties, showing organized interactions among oxide, nitride, and metallic components. This research paves the way for a better understanding of the formation mechanism of atypical unary metal oxynitride systems and highlights their unique features as an emerging class of materials for energy and environmental applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化氮化铜(CuxOyNz)系统中具有协同性能的界面在光催化制氢和固氮中的应用
在这项研究中,合成了一个具有可调Cu-O-N成分的非典型氧氮化铜(CuxOyNz)体系。利用x射线衍射、Rietveld细化、微拉曼和高分辨率透射电子显微镜进行结构分析,证实了CuxOyNz体系中存在Cu - o、Cu - n和金属Cu相。理化研究揭示了orrich -、Nrich-和Curich-CuxOyNz体系的不同性质。Orich-CuxOyNz体系在光催化反应中表现出更强的稳定性,而Nrich-CuxOyNz体系由于比纯cuo体系具有更低的带隙能量而表现出更广泛的光学响应。Curich-CuxOyNz体系具有亚稳定的Cu-N晶格,形成了等离子体欧姆结,促进了有效的电荷转移并增强了光催化活性。与Nrich-CuxOyNz(~ 73/741.8/435.4)和裸氧化物(~ 62/418.3/270.2)体系相比,Orich-CuxOyNz体系(~ 95/963.6/495.8)的光催化染料降解(in %)、H2析出(in μmol g−1 h−1)和NH3生成(in μmol g−1 h−1)的光催化性能更优。与传统的裸或n掺杂氧化铜材料不同,合成的氧化氮化铜系统表现出协同特性,在氧化物、氮化物和金属组分之间表现出有组织的相互作用。这项研究为更好地理解非典型一元金属氮化氧体系的形成机制铺平了道路,并突出了它们作为能源和环境应用的新兴材料的独特特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
期刊最新文献
Correction: Fluorination in core-only calamitic liquid crystals: how many and where should they go? Aggregation-induced emission-active thermally activated delayed fluorescent materials for solution-processed organic light-emitting diodes: a review Wavelength-sensitive CMOS-like optoelectronic inverter circuits based on solution-processable perovskite nanocrystals/organic semiconductor blends Perspectives on OLED Technology Correction: Work function modulated water-soluble anode interlayer with copper-ion doping for precise signal detection in organic photodiodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1