Brianna MacNider, Haning Xiu, Caglar Tamur, Kai Qian, Ian Frankel, Maya Brandy, Hyunsun Alicia Kim, Nicholas Boechler
{"title":"Customizable wave tailoring nonlinear materials enabled by bilevel inverse design","authors":"Brianna MacNider, Haning Xiu, Caglar Tamur, Kai Qian, Ian Frankel, Maya Brandy, Hyunsun Alicia Kim, Nicholas Boechler","doi":"10.1038/s41467-025-58630-8","DOIUrl":null,"url":null,"abstract":"<p>Passive wave transformation via nonlinearity is ubiquitous in settings from acoustics to optics and electromagnetics. It is well known that different nonlinearities yield different effects on propagating signals, which raises the question of “what precise nonlinearity is the best for a given wave tailoring application?” In this work, considering a one-dimensional spring-mass chain connected by polynomial springs (a variant of the Fermi-Pasta-Ulam-Tsingou system), we introduce a bilevel inverse design method which couples the shape optimization of structures for tailored constitutive responses with reduced-order nonlinear dynamical inverse design. We apply it to two qualitatively distinct problems—minimization of peak transmitted kinetic energy from impact, and pulse shape transformation—demonstrating our method’s breadth of applicability. For the impact problem, we obtain two fundamental insights. First, small differences in nonlinearity can drastically change the dynamic response of the system, from severely under- to outperforming a comparative linear system. Second, the oft-used strategy of impact mitigation via “energy locking” bistability can be significantly outperformed by our optimal nonlinearity. We validate this case with impact experiments and find excellent agreement. This study establishes a framework for broader passive nonlinear mechanical wave tailoring material design, with applications to computing, signal processing, shock mitigation, and autonomous materials.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58630-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Passive wave transformation via nonlinearity is ubiquitous in settings from acoustics to optics and electromagnetics. It is well known that different nonlinearities yield different effects on propagating signals, which raises the question of “what precise nonlinearity is the best for a given wave tailoring application?” In this work, considering a one-dimensional spring-mass chain connected by polynomial springs (a variant of the Fermi-Pasta-Ulam-Tsingou system), we introduce a bilevel inverse design method which couples the shape optimization of structures for tailored constitutive responses with reduced-order nonlinear dynamical inverse design. We apply it to two qualitatively distinct problems—minimization of peak transmitted kinetic energy from impact, and pulse shape transformation—demonstrating our method’s breadth of applicability. For the impact problem, we obtain two fundamental insights. First, small differences in nonlinearity can drastically change the dynamic response of the system, from severely under- to outperforming a comparative linear system. Second, the oft-used strategy of impact mitigation via “energy locking” bistability can be significantly outperformed by our optimal nonlinearity. We validate this case with impact experiments and find excellent agreement. This study establishes a framework for broader passive nonlinear mechanical wave tailoring material design, with applications to computing, signal processing, shock mitigation, and autonomous materials.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.