Improving the Stability of Colloidal CsPbBr3 Nanocrystals with an Alkylphosphonium Bromide as Surface Ligand Pair

IF 18.2 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2025-04-11 DOI:10.1021/acsenergylett.5c00124
Meenakshi Pegu, Hossein Roshan, Clara Otero-Martínez, Luca Goldoni, Juliette Zito, Nikolaos Livakas, Pascal Rusch, Francesco De Boni, Francesco Di Stasio, Ivan Infante, Luca De Trizio, Liberato Manna
{"title":"Improving the Stability of Colloidal CsPbBr3 Nanocrystals with an Alkylphosphonium Bromide as Surface Ligand Pair","authors":"Meenakshi Pegu, Hossein Roshan, Clara Otero-Martínez, Luca Goldoni, Juliette Zito, Nikolaos Livakas, Pascal Rusch, Francesco De Boni, Francesco Di Stasio, Ivan Infante, Luca De Trizio, Liberato Manna","doi":"10.1021/acsenergylett.5c00124","DOIUrl":null,"url":null,"abstract":"In this study, we synthesized a phosphonium-based ligand, trimethyl(tetradecyl)phosphonium bromide (TTP-Br), and employed it in the postsynthesis surface treatment of Cs-oleate-capped CsPbBr<sub>3</sub> nanocrystals (NCs). The photoluminescence quantum yield (PLQY) of the NCs increased from ∼60% to more than 90% as a consequence of replacing Cs-oleate with TTP-Br ligand pairs. Density functional theory calculations revealed that TTP<sup>+</sup> ions bind to the NC surface by occupying Cs<sup>+</sup> surface sites and orienting one of their P–CH<sub>3</sub> bonds perpendicular to the surface, akin to quaternary ammonium passivation. Importantly, TTP-Br-capped NCs exhibited higher stability in air compared to didodecyldimethylammonium bromide-capped CsPbBr<sub>3</sub> NCs (which are considered a benchmark system), retaining ∼90% of their PLQY after 6 weeks of air exposure. Light-emitting diodes fabricated with TTP-Br-capped NCs achieved a maximum external quantum efficiency of 17.2%, demonstrating the potential of phosphonium-based molecules as surface ligands for CsPbBr<sub>3</sub> NCs in optoelectronic applications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"4 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00124","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we synthesized a phosphonium-based ligand, trimethyl(tetradecyl)phosphonium bromide (TTP-Br), and employed it in the postsynthesis surface treatment of Cs-oleate-capped CsPbBr3 nanocrystals (NCs). The photoluminescence quantum yield (PLQY) of the NCs increased from ∼60% to more than 90% as a consequence of replacing Cs-oleate with TTP-Br ligand pairs. Density functional theory calculations revealed that TTP+ ions bind to the NC surface by occupying Cs+ surface sites and orienting one of their P–CH3 bonds perpendicular to the surface, akin to quaternary ammonium passivation. Importantly, TTP-Br-capped NCs exhibited higher stability in air compared to didodecyldimethylammonium bromide-capped CsPbBr3 NCs (which are considered a benchmark system), retaining ∼90% of their PLQY after 6 weeks of air exposure. Light-emitting diodes fabricated with TTP-Br-capped NCs achieved a maximum external quantum efficiency of 17.2%, demonstrating the potential of phosphonium-based molecules as surface ligands for CsPbBr3 NCs in optoelectronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以烷基溴化磷为表面配体对提高胶体CsPbBr3纳米晶体的稳定性
在本研究中,我们合成了一种基于磷的配体,三甲基(十四烷基)溴化磷(TTP-Br),并将其应用于cs油酸盖顶的CsPbBr3纳米晶体(NCs)的合成后表面处理。由于用TTP-Br配体对取代油酸cs, NCs的光致发光量子产率(PLQY)从60%增加到90%以上。密度泛函理论计算表明,TTP+离子通过占据Cs+表面位置并使其中一个P-CH3键垂直于表面而与NC表面结合,类似于季铵钝化。重要的是,与二十二烷基二甲基溴化铵覆盖的CsPbBr3纳米材料(被认为是一种基准体系)相比,ttp - br覆盖的纳米材料在空气中表现出更高的稳定性,在暴露于空气6周后保持了约90%的PLQY。用ttp - br包覆NCs制备的发光二极管实现了17.2%的最大外量子效率,证明了磷基分子作为CsPbBr3 NCs表面配体在光电应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
In Situ Polymerized Redox Additive for Suppressing Sn2+ Oxidation in Sn–Pb Perovskites A Decade of Excellence Driving the Next Wave of Energy Research Electrochemical Mineral Extraction from Seawater and Brines Unveiling the Promoting Effect of Trace CO2 on the Performance of Aqueous Fe–Air Batteries Compositional Analysis of Metal Halide Perovskites: Insight into the Coevaporation Process via Nuclear Magnetic Resonance and X-ray Fluorescence Spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1