Bandgap Engineering in Pressurized Calcium Sulfide

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-11 DOI:10.1021/acs.jpcc.5c00061
Longfei Gong, Songsong Han, Songhao Guo, Zhikai Zhu, Hongliang Dong, Yihuai Li, Zihua Wu, Xujie Lü, Qingyang Hu
{"title":"Bandgap Engineering in Pressurized Calcium Sulfide","authors":"Longfei Gong, Songsong Han, Songhao Guo, Zhikai Zhu, Hongliang Dong, Yihuai Li, Zihua Wu, Xujie Lü, Qingyang Hu","doi":"10.1021/acs.jpcc.5c00061","DOIUrl":null,"url":null,"abstract":"Calcium sulfide (CaS) is a semiconductor with excellent optoelectronic properties and its electronic structures are readily modulated by applying pressure. Here, we conduct in situ X-ray diffraction and ultraviolet–visible light spectroscopy experiments to investigate the evolution of band gap across the phase transition from B1 to B2 type structures. Upon pressurizing to 50 GPa, we observe the band gap decreased from the initial 3.51 to 1.18 eV. Through first-principles calculations, we reveal that the band gap narrowing is driven by a pressure-induced direct-to-indirect transition, accompanied by enhanced interactions between S 3p and Ca 3d states. Releasing pressure to ambient conditions recover the band gap, implying a fully reversible phase transition. Our results suggest that pressure-induced polymorphism and bandgap engineering tune the electronic properties of CaS, making it a promising optoelectronic material in the visible to deep-ultraviolet spectral regions.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"5 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00061","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium sulfide (CaS) is a semiconductor with excellent optoelectronic properties and its electronic structures are readily modulated by applying pressure. Here, we conduct in situ X-ray diffraction and ultraviolet–visible light spectroscopy experiments to investigate the evolution of band gap across the phase transition from B1 to B2 type structures. Upon pressurizing to 50 GPa, we observe the band gap decreased from the initial 3.51 to 1.18 eV. Through first-principles calculations, we reveal that the band gap narrowing is driven by a pressure-induced direct-to-indirect transition, accompanied by enhanced interactions between S 3p and Ca 3d states. Releasing pressure to ambient conditions recover the band gap, implying a fully reversible phase transition. Our results suggest that pressure-induced polymorphism and bandgap engineering tune the electronic properties of CaS, making it a promising optoelectronic material in the visible to deep-ultraviolet spectral regions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加压硫化钙的带隙工程
硫化钙(CaS)是一种具有优异光电特性的半导体,其电子结构很容易通过施加压力进行调制。在此,我们进行了原位 X 射线衍射和紫外-可见光光谱实验,以研究从 B1 型结构到 B2 型结构的相变过程中的带隙演化。当加压到 50 GPa 时,我们观察到带隙从最初的 3.51 eV 下降到 1.18 eV。通过第一原理计算,我们发现带隙变窄是由压力诱导的直接到间接转变驱动的,同时伴随着 S 3p 和 Ca 3d 态之间相互作用的增强。将压力释放到环境条件下可恢复带隙,这意味着相变是完全可逆的。我们的研究结果表明,压力诱导的多态性和带隙工程调整了 CaS 的电子特性,使其在可见光到深紫外光谱区域成为一种前景广阔的光电材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Dependence of Water Adsorption on Aluminum Content in the BEA (Polymorph A) Zeolite Using Monte Carlo Simulations Atomistic-Scale Simulations of the High-Temperature Chemistry of Si/C/O/H-Based Polymers and Their Conversion to Si/C Solid Materials Structural, Thermal, Electronic, and Optical Properties of Defective and Oxidized WSSe for Efficient Photocatalytic Water Splitting Separate Control of Electrolyte Wetting and Prelithiation Reaction of Silicon Monoxide-Carbon Nanotube Anodes for Lithium-Ion Batteries The Effect of Crystalline Water on Lattice Transformation and Li+ Diffusion Promotion in Halide Perovskite Anode Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1