Ab Initio Insights into the Surface Passivation-Driven Moisture Resistance in CsSnI3 Perovskites

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-10 DOI:10.1021/acs.jpcc.5c01457
Yongjiang Li, Mingjie Shi, Weihao Qi, Ming-Hui Shang, Yapeng Zheng, Yong Xu, Jinju Zheng, Weiyou Yang
{"title":"Ab Initio Insights into the Surface Passivation-Driven Moisture Resistance in CsSnI3 Perovskites","authors":"Yongjiang Li, Mingjie Shi, Weihao Qi, Ming-Hui Shang, Yapeng Zheng, Yong Xu, Jinju Zheng, Weiyou Yang","doi":"10.1021/acs.jpcc.5c01457","DOIUrl":null,"url":null,"abstract":"The lead-free γ-CsSnI<sub>3</sub> perovskite, which is a promising photovoltaic material for efficient solar energy harvesting, suffers from two critical limitations: intrinsic phase instability and rapid degradation caused by water infiltration. To address these challenges, this study proposes a ligand engineering strategy to stabilize γ-CsSnI<sub>3</sub> through surface passivation. Using transition state search (TSS) calculations, we systematically investigate the effects of oriented ligands with tailored molecular lengths on water resistance. Theoretical analyses reveal that the spontaneous degradation of unpassivated CsSnI<sub>3</sub> arises from negative water adsorption energy (−0.547 eV), driven by dual mechanisms: (1) hydrogen bonding between water molecules and surface H/O atoms, and (2) electrostatic interactions with exposed Cs<sup>+</sup>/I<sup>–</sup> ions. While short-chain ligands such as ortho-aminothiophene (2-ATP<sup>+</sup>) create nanoscale gaps (3.8 Å), enabling water diffusion, meta-aminoethylthiophene (3-TPE<sup>+</sup>) with extended molecular chains establishes a robust hydrophobic barrier, imposing a 0.299 eV (28.8 kJ/mol) diffusion energy barrier that effectively blocks water permeation. This work establishes a structure–property relationship for perovskite passivation, providing a rational design principle for developing durable lead-free photovoltaic materials.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"25 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c01457","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The lead-free γ-CsSnI3 perovskite, which is a promising photovoltaic material for efficient solar energy harvesting, suffers from two critical limitations: intrinsic phase instability and rapid degradation caused by water infiltration. To address these challenges, this study proposes a ligand engineering strategy to stabilize γ-CsSnI3 through surface passivation. Using transition state search (TSS) calculations, we systematically investigate the effects of oriented ligands with tailored molecular lengths on water resistance. Theoretical analyses reveal that the spontaneous degradation of unpassivated CsSnI3 arises from negative water adsorption energy (−0.547 eV), driven by dual mechanisms: (1) hydrogen bonding between water molecules and surface H/O atoms, and (2) electrostatic interactions with exposed Cs+/I ions. While short-chain ligands such as ortho-aminothiophene (2-ATP+) create nanoscale gaps (3.8 Å), enabling water diffusion, meta-aminoethylthiophene (3-TPE+) with extended molecular chains establishes a robust hydrophobic barrier, imposing a 0.299 eV (28.8 kJ/mol) diffusion energy barrier that effectively blocks water permeation. This work establishes a structure–property relationship for perovskite passivation, providing a rational design principle for developing durable lead-free photovoltaic materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从头算方法研究CsSnI3钙钛矿表面钝化驱动的耐湿气性能
无铅γ-CsSnI3 包晶是一种有望实现高效太阳能收集的光伏材料,但它存在两个关键的局限性:固有相不稳定性和水渗入导致的快速降解。为了应对这些挑战,本研究提出了一种配体工程策略,通过表面钝化来稳定γ-CsSnI3。通过过渡态搜索(TSS)计算,我们系统地研究了具有定制分子长度的定向配体对耐水性的影响。理论分析表明,未钝化 CsSnI3 的自发降解源于负的水吸附能(-0.547 eV),由两种机制驱动:(1)水分子与表面 H/O 原子间的氢键作用;(2)与暴露的 Cs+/I- 离子之间的静电相互作用。短链配体(如原氨基噻吩(2-ATP+))会产生纳米级间隙(3.8 Å),使水得以扩散,而具有延长分子链的元氨基乙基噻吩(3-TPE+)则会建立强大的疏水屏障,形成 0.299 eV(28.8 kJ/mol)的扩散能障,有效阻止水的渗透。这项研究为包晶石钝化建立了结构-性能关系,为开发耐用的无铅光伏材料提供了合理的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Dependence of Water Adsorption on Aluminum Content in the BEA (Polymorph A) Zeolite Using Monte Carlo Simulations Atomistic-Scale Simulations of the High-Temperature Chemistry of Si/C/O/H-Based Polymers and Their Conversion to Si/C Solid Materials Structural, Thermal, Electronic, and Optical Properties of Defective and Oxidized WSSe for Efficient Photocatalytic Water Splitting Separate Control of Electrolyte Wetting and Prelithiation Reaction of Silicon Monoxide-Carbon Nanotube Anodes for Lithium-Ion Batteries The Effect of Crystalline Water on Lattice Transformation and Li+ Diffusion Promotion in Halide Perovskite Anode Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1