Evolution of LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes for Li-Ion Batteries: An In Situ Electron Paramagnetic Resonance Study

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-04-11 DOI:10.1021/acs.jpcc.5c00275
Bin Wang, Edurne Redondo, Lewis W. Le Fevre, Adam Brookfield, Eric J. L. McInnes, Robert A. W. Dryfe
{"title":"Evolution of LiNi0.8Mn0.1Co0.1O2 (NMC811) Cathodes for Li-Ion Batteries: An In Situ Electron Paramagnetic Resonance Study","authors":"Bin Wang, Edurne Redondo, Lewis W. Le Fevre, Adam Brookfield, Eric J. L. McInnes, Robert A. W. Dryfe","doi":"10.1021/acs.jpcc.5c00275","DOIUrl":null,"url":null,"abstract":"The rapid voltage and capacity fade of the otherwise promising Ni-rich layered LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NMC811) cathode are the primary obstacles to its successful commercialization in lithium-ion batteries (LIBs). Here, <i>in situ</i> electrochemical electron paramagnetic resonance (EPR) spectroscopy is employed to gain insight into the cation redox behavior of the NMC811 cathode during the cell charge/discharge process. Different oxidation states of Ni ions are detected by variations in the signal of the EPR spectra. <i>Ex situ</i> studies of NMC811 at different SOC levels also confirm changes in the local Mn–Ni environment. A comparison of <i>in situ</i> studies on fresh and cycled NMC811 electrodes demonstrates that the fundamental redox processes remain unchanged upon cycling of the material. Finally, dissolved Mn and Co ions from the bulk are found using <i>ex situ</i> EPR characterization of the cycled cathode and separator. The dissolution of these metal ions can accelerate the degradation of the entire battery.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"90 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.5c00275","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid voltage and capacity fade of the otherwise promising Ni-rich layered LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode are the primary obstacles to its successful commercialization in lithium-ion batteries (LIBs). Here, in situ electrochemical electron paramagnetic resonance (EPR) spectroscopy is employed to gain insight into the cation redox behavior of the NMC811 cathode during the cell charge/discharge process. Different oxidation states of Ni ions are detected by variations in the signal of the EPR spectra. Ex situ studies of NMC811 at different SOC levels also confirm changes in the local Mn–Ni environment. A comparison of in situ studies on fresh and cycled NMC811 electrodes demonstrates that the fundamental redox processes remain unchanged upon cycling of the material. Finally, dissolved Mn and Co ions from the bulk are found using ex situ EPR characterization of the cycled cathode and separator. The dissolution of these metal ions can accelerate the degradation of the entire battery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池用 LiNi0.8Mn0.1Co0.1O2 (NMC811) 阴极的演变:原位电子顺磁共振研究
富镍层状LiNi0.8Mn0.1Co0.1O2 (NMC811)阴极的电压和容量快速衰减是其在锂离子电池(LIBs)中成功商业化的主要障碍。本文采用原位电化学电子顺磁共振(EPR)光谱技术,深入研究了NMC811阴极在电池充放电过程中的阳离子氧化还原行为。通过EPR光谱信号的变化,可以检测到Ni离子的不同氧化态。不同有机碳水平下NMC811的迁地研究也证实了局地Mn-Ni环境的变化。对新鲜和循环的NMC811电极的原位研究比较表明,在材料循环时,基本的氧化还原过程保持不变。最后,利用循环阴极和分离器的非原位EPR表征,从体中发现溶解的Mn和Co离子。这些金属离子的溶解会加速整个电池的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Dependence of Water Adsorption on Aluminum Content in the BEA (Polymorph A) Zeolite Using Monte Carlo Simulations Atomistic-Scale Simulations of the High-Temperature Chemistry of Si/C/O/H-Based Polymers and Their Conversion to Si/C Solid Materials Structural, Thermal, Electronic, and Optical Properties of Defective and Oxidized WSSe for Efficient Photocatalytic Water Splitting Separate Control of Electrolyte Wetting and Prelithiation Reaction of Silicon Monoxide-Carbon Nanotube Anodes for Lithium-Ion Batteries The Effect of Crystalline Water on Lattice Transformation and Li+ Diffusion Promotion in Halide Perovskite Anode Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1