Ce-doped NiCoP/ Co3O4 composite Nanostructures on Ni foam and their enhanced performance for water and urea electrolysis

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-04-10 DOI:10.1016/j.jcis.2025.137542
Zhe Liu , Soyeon Lee , Tao Zhou , Jiwoong Yang , Taekyung Yu
{"title":"Ce-doped NiCoP/ Co3O4 composite Nanostructures on Ni foam and their enhanced performance for water and urea electrolysis","authors":"Zhe Liu ,&nbsp;Soyeon Lee ,&nbsp;Tao Zhou ,&nbsp;Jiwoong Yang ,&nbsp;Taekyung Yu","doi":"10.1016/j.jcis.2025.137542","DOIUrl":null,"url":null,"abstract":"<div><div>Producing hydrogen through freshwater or urea-containing wastewater electrolysis using renewable electricity requires multifunctional catalysts made from nonprecious metals. In the current study, we disclose the rational fabrication of oxide/phosphide heterostructure nanorods with rare earth metal doping on nickel foam (NF), denoted Ce-NiCoP/Co<sub>3</sub>O<sub>4</sub>/NF, via partial phosphorization. Benefiting from intrinsic interface formation and doping effects, the interaction between the coupling components facilitates electron transfer, optimizing the electronic configuration of the Ce-NiCoP/Co<sub>3</sub>O<sub>4</sub>/NF catalyst. Ce-NiCoP/Co<sub>3</sub>O<sub>4</sub>/NF exhibited a competitive potential of − 0.151 V for hydrogen evolution reaction, 1.50 V for oxygen evolution reaction (OER), and 1.33 V (versus reversible hydrogen electrode) toward urea oxidation reactions (UOR) at 100 mA cm<sup>−2</sup>. In situ Fourier-transform infrared combined with electrochemical analysis detects *OOH and *O<sub>2</sub><sup>−</sup> intermediates in OER, as well as CO<sub>3</sub><sup>2−</sup> and CNO<sup>−</sup> ions, alongside the N–H vibration in UOR, providing deeper insight into the OER and UOR mechanisms on the Ce-NiCoP/Co<sub>3</sub>O<sub>4</sub>/NF. More importantly, the catalyst exhibited an activity of 20 mA cm<sup>−2</sup> requiring voltages as low as 1.52 V for unassisted water splitting and 1.27 V for urea-assisted electrolysis.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"692 ","pages":"Article 137542"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725009336","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Producing hydrogen through freshwater or urea-containing wastewater electrolysis using renewable electricity requires multifunctional catalysts made from nonprecious metals. In the current study, we disclose the rational fabrication of oxide/phosphide heterostructure nanorods with rare earth metal doping on nickel foam (NF), denoted Ce-NiCoP/Co3O4/NF, via partial phosphorization. Benefiting from intrinsic interface formation and doping effects, the interaction between the coupling components facilitates electron transfer, optimizing the electronic configuration of the Ce-NiCoP/Co3O4/NF catalyst. Ce-NiCoP/Co3O4/NF exhibited a competitive potential of − 0.151 V for hydrogen evolution reaction, 1.50 V for oxygen evolution reaction (OER), and 1.33 V (versus reversible hydrogen electrode) toward urea oxidation reactions (UOR) at 100 mA cm−2. In situ Fourier-transform infrared combined with electrochemical analysis detects *OOH and *O2 intermediates in OER, as well as CO32− and CNO ions, alongside the N–H vibration in UOR, providing deeper insight into the OER and UOR mechanisms on the Ce-NiCoP/Co3O4/NF. More importantly, the catalyst exhibited an activity of 20 mA cm−2 requiring voltages as low as 1.52 V for unassisted water splitting and 1.27 V for urea-assisted electrolysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ce掺杂NiCoP/ Co3O4复合纳米结构及其对水和尿素电解性能的增强
使用可再生电力通过淡水或含尿素废水电解生产氢气需要由非贵金属制成的多功能催化剂。在本研究中,我们揭示了在泡沫镍(NF)上掺杂稀土金属的氧化物/磷化物异质结构纳米棒的合理制备方法,标记为Ce-NiCoP/Co3O4/NF。得益于本征界面的形成和掺杂效应,耦合组分之间的相互作用促进了电子转移,优化了Ce-NiCoP/Co3O4/NF催化剂的电子构型。Ce-NiCoP/Co3O4/NF在100 mA cm−2下的析氢反应电位为- 0.151 V,析氧反应电位为1.50 V,尿素氧化反应电位为1.33 V(相对于可逆氢电极)。原位傅里叶变换红外结合电化学分析检测OER中的*OOH和*O2 -中间体,以及UOR中的CO32 -和CNO -离子,以及N-H振动,为Ce-NiCoP/Co3O4/NF中的OER和UOR机制提供了更深入的了解。更重要的是,催化剂表现出20 mA cm−2的活性,需要低至1.52 V的无辅助水分解电压和1.27 V的尿素辅助电解电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1