Enhanced inter-camera person re-identification leveraging mixed-order relation-aware recurrent neural network

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-03-27 DOI:10.1016/j.neucom.2025.130123
Vidhyalakshmi MK , Bhuvanesh Unhelkar , Pravin R. Kshirsagar , R. Thiagarajan
{"title":"Enhanced inter-camera person re-identification leveraging mixed-order relation-aware recurrent neural network","authors":"Vidhyalakshmi MK ,&nbsp;Bhuvanesh Unhelkar ,&nbsp;Pravin R. Kshirsagar ,&nbsp;R. Thiagarajan","doi":"10.1016/j.neucom.2025.130123","DOIUrl":null,"url":null,"abstract":"<div><div>The person Re-Identification (Re-ID) requires a significant quantity of the costly label information, whereas unsupervised ones are still unable to provide satisfactory identification performance. These results in the poor scalability due to the requirement of the laborious data collection and annotation process in real-world Re-id applications. Unsupervised Re-ID techniques not require identity label data, but have significantly worse and inadequate model performance. In this paper, Enhanced Inter-Camera Person Re-identification leveraging Mixed-Order Relation-Aware Recurrent Neural Network (EICPR-MORRNN-TTAO) is proposed. The input images are collected from Market-1501, MSMT17, and Duke MTMC-reID datasets. Afterward, the input image is supplied to pre-processing. In preprocessing, Unsharp Structure Guided Filtering (USGF) is employed to enhance image quality. The pre-processed image is supplied to classification phase for Re-identifying the Inter-Camera Person as Same and Different utilizing Mixed-Order Relation-Aware Recurrent Neural Network (MORRNN). Generally, MORRNN does not adopt any optimization methods to determine the ideal parameters to assure accurate person Re-identification. Hence, Triangulation Topology Aggregation Optimizer (TTAO) is proposed to enhance the weight parameters of MORRNN. The EICPR-MORRNN-TTAO method is implemented in Python. The metrics, like Mean Average Precision (MAP), Cumulative Matching Characteristic (CMC), recall, Rank-1, Rank-10, Rank-20, Entropy, error rate, and Receiver Operating Characteristic (ROC) is considered. The EICPR-MORRNN-TTAO method attains 23.10 %, 27.54 % and 25.72 %, higher mAP, 21.48 %, 17.73 %, 25.32 % higher CMC and 20.98 %, 26.66 % and 16.32 % lower Error rate, are compared with existing techniques, like Intra-camera supervised Re-ID (ICSP-RI-PR), Offline-online associated camera-aware proxies for unsupervised Re-ID(OSC-UPRI-EIC), and Unsupervised Re-ID with stochastic training strategy (UPRI-EIC-STS) respectively.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130123"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225007957","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The person Re-Identification (Re-ID) requires a significant quantity of the costly label information, whereas unsupervised ones are still unable to provide satisfactory identification performance. These results in the poor scalability due to the requirement of the laborious data collection and annotation process in real-world Re-id applications. Unsupervised Re-ID techniques not require identity label data, but have significantly worse and inadequate model performance. In this paper, Enhanced Inter-Camera Person Re-identification leveraging Mixed-Order Relation-Aware Recurrent Neural Network (EICPR-MORRNN-TTAO) is proposed. The input images are collected from Market-1501, MSMT17, and Duke MTMC-reID datasets. Afterward, the input image is supplied to pre-processing. In preprocessing, Unsharp Structure Guided Filtering (USGF) is employed to enhance image quality. The pre-processed image is supplied to classification phase for Re-identifying the Inter-Camera Person as Same and Different utilizing Mixed-Order Relation-Aware Recurrent Neural Network (MORRNN). Generally, MORRNN does not adopt any optimization methods to determine the ideal parameters to assure accurate person Re-identification. Hence, Triangulation Topology Aggregation Optimizer (TTAO) is proposed to enhance the weight parameters of MORRNN. The EICPR-MORRNN-TTAO method is implemented in Python. The metrics, like Mean Average Precision (MAP), Cumulative Matching Characteristic (CMC), recall, Rank-1, Rank-10, Rank-20, Entropy, error rate, and Receiver Operating Characteristic (ROC) is considered. The EICPR-MORRNN-TTAO method attains 23.10 %, 27.54 % and 25.72 %, higher mAP, 21.48 %, 17.73 %, 25.32 % higher CMC and 20.98 %, 26.66 % and 16.32 % lower Error rate, are compared with existing techniques, like Intra-camera supervised Re-ID (ICSP-RI-PR), Offline-online associated camera-aware proxies for unsupervised Re-ID(OSC-UPRI-EIC), and Unsupervised Re-ID with stochastic training strategy (UPRI-EIC-STS) respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用混合阶关系感知递归神经网络增强镜头间人员再识别能力
人员再识别(Re-ID)需要大量昂贵的标签信息,而无监督的身份识别仍然不能提供令人满意的识别性能。由于在真实的Re-id应用程序中需要费力的数据收集和注释过程,这导致了较差的可伸缩性。无监督的Re-ID技术不需要身份标签数据,但模型性能明显较差且不充分。本文提出了一种基于混合阶关系感知递归神经网络(EICPR-MORRNN-TTAO)的增强相机间人物再识别方法。输入图像来自Market-1501、MSMT17和Duke MTMC-reID数据集。然后,将输入图像提供给预处理。在预处理中,采用非锐利结构引导滤波(USGF)来提高图像质量。将预处理后的图像提供给分类阶段,利用混合阶关系感知递归神经网络(MORRNN)重新识别相机间的相同和不同人物。一般来说,MORRNN不采用任何优化方法来确定理想的参数,以保证准确的人再识别。为此,提出了三角拓扑聚合优化器(TTAO)来增强MORRNN的权值参数。EICPR-MORRNN-TTAO方法在Python中实现。考虑了平均平均精度(MAP)、累积匹配特性(CMC)、召回率、Rank-1、Rank-10、Rank-20、熵、错误率和接收者工作特性(ROC)等指标。 % EICPR-MORRNN-TTAO方法达到23.10,27.54 % 25.72 %,更高的地图,21.48 % 17.73 %,CMC和20.98 高25.32 % %, % 26.66和16.32 %降低错误率,与现有技术相比,像Intra-camera监督Re-ID (ICSP-RI-PR),无监督Re-ID Offline-online camera-aware有关代理(OSC-UPRI-EIC)和无监督Re-ID随机分别训练策略(UPRI-EIC-STS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Integrating channel priors and shared pattern learning for enhanced motor imagery EEG classification Diffusion-facilitated knowledge distillation in human activity recognition Adapting to the environment: An energy‑efficient dual‑synapse spiking model for mobile micro-learning environmental forecasting Editorial Board WCK-SSAM: Working condition knowledge guided sparse self-attention mechanism for operational status perception of multi-modal fused magnesium furnace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1