Neuroinflammation Involving Endothelin-1 and Platelet-Activating Factor Receptors Contributes To Self-Injurious Behaviors Induced by Bay k-8644 in Adolescent Mice
Ngoc Kim Cuong Tran, Ji Hoon Jeong, Naveen Sharma, Yen Nhi Doan Nguyen, Jung Hoon Park, Khanh Ngan Thi Nguyen, Hoang-Yen Phi Tran, Duy-Khanh Dang, Hyoung-Chun Kim, Eun-Joo Shin
{"title":"Neuroinflammation Involving Endothelin-1 and Platelet-Activating Factor Receptors Contributes To Self-Injurious Behaviors Induced by Bay k-8644 in Adolescent Mice","authors":"Ngoc Kim Cuong Tran, Ji Hoon Jeong, Naveen Sharma, Yen Nhi Doan Nguyen, Jung Hoon Park, Khanh Ngan Thi Nguyen, Hoang-Yen Phi Tran, Duy-Khanh Dang, Hyoung-Chun Kim, Eun-Joo Shin","doi":"10.1007/s11064-025-04387-x","DOIUrl":null,"url":null,"abstract":"<div><p>Bay k-8644, an activator of L-type voltage-gated calcium channels, induces self-injurious behaviors in mice. Although previous studies using animal models have suggested the possible implications of neuroinflammation in self-injurious behaviors, this has not yet been elucidated in the context of Bay k-8644-induced self-injurious behaviors. In this study, Bay k-8644 (50 µg, i.c.v.)-induced self-injurious behaviors were accompanied by increased expression of endothelin (ET)-1, platelet-activating factor (PAF) receptors, and Iba-1 in the striatum. Pretreatment with the ET receptor antagonist bosentan (10 mg/kg, i.p.), the PAF receptor antagonist ginkgolide B (10 mg/kg, i.p.), or the microglial activation inhibitor minocycline (40 mg/kg/day for 5 days, i.p.) significantly inhibited Bay k-8644-induced self-injurious behaviors and microglial activation in the striatum. Interestingly, bosentan also suppressed Bay k-8644-induced PAF receptor expression, indicating that ET-1 may act as an upstream modulator of the PAF <i>signaling</i> under these experimental conditions. Bay k-8644-induced ET-1 expression and consequent pro-inflammatory changes were reversed by the protein kinase C (PKC) inhibitor NPC-15,437 and the Ca<sup>2+</sup>/calmodulin-dependent kinase II (CaMKII) inhibitor KN-93. Moreover, Bay k-8644-induced self-injurious behaviors and microglial activation were significantly potentiated by exogenous ET-1 administration (10 pmol, i.c.v.) or by weak neuroinflammation in the striatum induced by systemic injection of low-dose lipopolysaccharide (LPS; 1 mg/kg, i.p.). Our results suggest that neuroinflammatory changes associated with ET-1/PAF signaling in the striatum contribute to Bay k-8644-induced self-injurious behaviors.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04387-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bay k-8644, an activator of L-type voltage-gated calcium channels, induces self-injurious behaviors in mice. Although previous studies using animal models have suggested the possible implications of neuroinflammation in self-injurious behaviors, this has not yet been elucidated in the context of Bay k-8644-induced self-injurious behaviors. In this study, Bay k-8644 (50 µg, i.c.v.)-induced self-injurious behaviors were accompanied by increased expression of endothelin (ET)-1, platelet-activating factor (PAF) receptors, and Iba-1 in the striatum. Pretreatment with the ET receptor antagonist bosentan (10 mg/kg, i.p.), the PAF receptor antagonist ginkgolide B (10 mg/kg, i.p.), or the microglial activation inhibitor minocycline (40 mg/kg/day for 5 days, i.p.) significantly inhibited Bay k-8644-induced self-injurious behaviors and microglial activation in the striatum. Interestingly, bosentan also suppressed Bay k-8644-induced PAF receptor expression, indicating that ET-1 may act as an upstream modulator of the PAF signaling under these experimental conditions. Bay k-8644-induced ET-1 expression and consequent pro-inflammatory changes were reversed by the protein kinase C (PKC) inhibitor NPC-15,437 and the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor KN-93. Moreover, Bay k-8644-induced self-injurious behaviors and microglial activation were significantly potentiated by exogenous ET-1 administration (10 pmol, i.c.v.) or by weak neuroinflammation in the striatum induced by systemic injection of low-dose lipopolysaccharide (LPS; 1 mg/kg, i.p.). Our results suggest that neuroinflammatory changes associated with ET-1/PAF signaling in the striatum contribute to Bay k-8644-induced self-injurious behaviors.
期刊介绍:
Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.