Ferroelectric Rattling Enhances Thermoelectric Efficiency by Suppressing Thermal Transport in Metal Thio- and Selenophosphate Monolayers

IF 7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-04-11 DOI:10.1021/acs.chemmater.5c00035
Amir Ata Jalali, S. Shahab Naghavi
{"title":"Ferroelectric Rattling Enhances Thermoelectric Efficiency by Suppressing Thermal Transport in Metal Thio- and Selenophosphate Monolayers","authors":"Amir Ata Jalali, S. Shahab Naghavi","doi":"10.1021/acs.chemmater.5c00035","DOIUrl":null,"url":null,"abstract":"High-performance thermoelectric devices need materials with an optimal balance between low thermal conductivity and high electrical transport coefficients. Yet achieving such a balance is difficult. We address this challenge using M<sup>I</sup>M<sup>III</sup>P<sub>2</sub>Q<sub>6</sub> (M<sup>I</sup> = Ag, Cu; M<sup>III</sup> = Al, Ga, Sb, Bi, In, V, Sc, Cr; Q = S, Se) monolayers, which exploit ferroelectric and temperature-induced dynamical off-centering (i.e., emphanisis) instabilities to enhance thermoelectric efficiency. First-principles simulations show that above the Curie temperature, the rattling of coinage metal cations (Ag, Cu) suppresses lattice thermal conductivity in CuInP<sub>2</sub>S<sub>6</sub> down to the amorphous limit (0.19 W m<sup>–1</sup> K<sup>–1</sup>) without compromising the power factor. Even in nonferroelectric materials, rattling happens as emphanisis, causing ultralow lattice thermal transport between 0.07 and 0.3 W m<sup>–1</sup> K<sup>–1</sup> in AgBiP<sub>2</sub>Se<sub>6</sub>, AgInP<sub>2</sub>Se<sub>6</sub>, and AgGaP<sub>2</sub>Se<sub>6</sub>. The unprecedented glass-like lattice thermal conductivity in these monolayers, paired with the large electrical transport coefficients, yields predicted <i>zT</i> values surpassing two. These findings show that 2D M<sup>I</sup>M<sup>III</sup>P<sub>2</sub>Q<sub>6</sub> materials utilize ferroelectric instabilities to enhance their thermoelectric performance, unlocking an avenue for achieving a high figure of merit (<i>zT</i>) on the nanoscale.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"75 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.5c00035","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance thermoelectric devices need materials with an optimal balance between low thermal conductivity and high electrical transport coefficients. Yet achieving such a balance is difficult. We address this challenge using MIMIIIP2Q6 (MI = Ag, Cu; MIII = Al, Ga, Sb, Bi, In, V, Sc, Cr; Q = S, Se) monolayers, which exploit ferroelectric and temperature-induced dynamical off-centering (i.e., emphanisis) instabilities to enhance thermoelectric efficiency. First-principles simulations show that above the Curie temperature, the rattling of coinage metal cations (Ag, Cu) suppresses lattice thermal conductivity in CuInP2S6 down to the amorphous limit (0.19 W m–1 K–1) without compromising the power factor. Even in nonferroelectric materials, rattling happens as emphanisis, causing ultralow lattice thermal transport between 0.07 and 0.3 W m–1 K–1 in AgBiP2Se6, AgInP2Se6, and AgGaP2Se6. The unprecedented glass-like lattice thermal conductivity in these monolayers, paired with the large electrical transport coefficients, yields predicted zT values surpassing two. These findings show that 2D MIMIIIP2Q6 materials utilize ferroelectric instabilities to enhance their thermoelectric performance, unlocking an avenue for achieving a high figure of merit (zT) on the nanoscale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁电振动通过抑制金属硫代和磷酸亚硒层的热传递来提高热电效率
高性能热电器件需要在低导热系数和高电输运系数之间达到最佳平衡的材料。然而,实现这种平衡是困难的。我们使用MIMIIIP2Q6 (MI = Ag, Cu;MIII = Al, Ga, Sb, Bi, In, V, Sc, Cr;Q = S, Se)单层,利用铁电和温度诱导的动态偏离中心(即强调)不稳定性来提高热电效率。第一性原理模拟表明,在居里温度以上,金属阳离子(Ag, Cu)的嘎吱声抑制了CuInP2S6的晶格热导率,使其降至非晶极限(0.19 W m-1 K-1),而不影响功率因数。即使在非铁电材料中,嘎嘎声也会作为强化而发生,在AgBiP2Se6、AgInP2Se6和AgGaP2Se6中导致0.07到0.3 W m-1 K-1之间的超低晶格热传递。这些单层中前所未有的玻璃状晶格导热性,加上大的电输运系数,产生了预测的zT值超过2。这些发现表明,二维MIMIIIP2Q6材料利用铁电不稳定性来增强其热电性能,为在纳米尺度上实现高品质系数(zT)开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Unveiling the Key Role of Aggregation in the Self-Doping of Conjugated Polyelectrolytes Designing Realistic Operando Raman Battery Experiments: Examining Measurement Validity and Spatial Inhomogeneities Recent Advances in Fiber-Shaped Supercapacitors for Flexible and Wearable Energy-Storage Applications Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1