Resistance-Restorable Nanofluidic Memristor and Neuromorphic Chip

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-04-12 DOI:10.1021/acs.nanolett.5c00315
Ke Liu, Yongchang Wang, Miao Sun, Jiajia Lu, Deli Shi, Yanbo Xie
{"title":"Resistance-Restorable Nanofluidic Memristor and Neuromorphic Chip","authors":"Ke Liu, Yongchang Wang, Miao Sun, Jiajia Lu, Deli Shi, Yanbo Xie","doi":"10.1021/acs.nanolett.5c00315","DOIUrl":null,"url":null,"abstract":"Resistance drift due to residual ions limits the accuracy of memristor-based neuromorphic computing. Here, we demonstrate nanofluidic memristors based on voltage-driven ion filling within Ångström channels, immersed in asymmetrically concentrated electrolyte solutions. Inspired by the brain’s waste clearance, we restore conductance after 20,000 cycles by removing trapped ions, paving the way for endurance enhancement. The devices exhibit hour-long retention and ultralow energy consumption (∼0.2 fJ per spike per channel). By tuning the voltage, frequency, and pH, we emulate short-term synaptic plasticity. Finally, we demonstrated the first 4 × 4 nanofluidic memristor array capable of recognizing mathematical operators. Our work demonstrated that fluidic memristors are promising for energy-efficient, long-retention, and endurance neuromorphic chips.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"218 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00315","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistance drift due to residual ions limits the accuracy of memristor-based neuromorphic computing. Here, we demonstrate nanofluidic memristors based on voltage-driven ion filling within Ångström channels, immersed in asymmetrically concentrated electrolyte solutions. Inspired by the brain’s waste clearance, we restore conductance after 20,000 cycles by removing trapped ions, paving the way for endurance enhancement. The devices exhibit hour-long retention and ultralow energy consumption (∼0.2 fJ per spike per channel). By tuning the voltage, frequency, and pH, we emulate short-term synaptic plasticity. Finally, we demonstrated the first 4 × 4 nanofluidic memristor array capable of recognizing mathematical operators. Our work demonstrated that fluidic memristors are promising for energy-efficient, long-retention, and endurance neuromorphic chips.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可恢复电阻的纳米流控忆阻器和神经形态芯片
残留离子引起的电阻漂移限制了基于记忆电阻器的神经形态计算的准确性。在这里,我们展示了基于电压驱动离子填充Ångström通道的纳米流体忆阻器,浸入不对称浓缩的电解质溶液中。受大脑废物清除的启发,我们通过去除捕获的离子,在20,000次循环后恢复电导,为增强耐力铺平了道路。该器件具有一小时的保持时间和超低能量消耗(每个通道每个尖峰约0.2 fJ)。通过调节电压、频率和pH值,我们模拟了短期突触的可塑性。最后,我们展示了第一个能够识别数学运算符的4 × 4纳米流体忆阻器阵列。我们的工作表明,流体忆阻器有望成为节能、长保留和持久的神经形态芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Ultrathin Grid-Structured Crystalline Silicon Films with Through-Hole Arrays for Flexible and Transparent Wearable Optoelectronics. Toward Environmentally Responsive Hypersound Materials Spin-Valley Locking in 2H-TaS2 and Its Co-Intercalated Counterpart: Roles of Surface Domains and Co Intercalation Pressure Tuning of Layer-Hybridized Excitons in Trilayer WSe2 Ferroelectric Switchable Topological Antiferromagnetism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1