Unveiling chromatin dynamics with virtual epigenome

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-04-12 DOI:10.1038/s41467-025-58481-3
Ming-Yu Lin, Yu-Cheng Lo, Jui-Hung Hung
{"title":"Unveiling chromatin dynamics with virtual epigenome","authors":"Ming-Yu Lin, Yu-Cheng Lo, Jui-Hung Hung","doi":"10.1038/s41467-025-58481-3","DOIUrl":null,"url":null,"abstract":"<p>The three-dimensional organization of chromatin is essential for gene regulation and cellular function, with epigenome playing a key role. Hi-C methods have expanded our understanding of chromatin interactions, but their high cost and complexity limit their use. Existing models for predicting chromatin interactions rely on limited ChIP-seq inputs, reducing their accuracy and generalizability. In this work, we present a computational approach, EpiVerse, which leverages imputed epigenetic signals and advanced deep learning techniques. EpiVerse significantly improves the accuracy of cross-cell-type Hi-C prediction, while also enhancing model interpretability by incorporating chromatin state prediction within a multitask learning framework. Moreover, EpiVerse predicts Hi-C contact maps across an array of 39 human tissues, which provides a comprehensive view of the complex relationship between chromatin structure and gene regulation. Furthermore, EpiVerse facilitates unprecedented in silico perturbation experiments at the “epigenome-level” to unveil the chromatin architecture under specific conditions. EpiVerse is available on GitHub: https://github.com/jhhung/EpiVerse.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"54 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58481-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The three-dimensional organization of chromatin is essential for gene regulation and cellular function, with epigenome playing a key role. Hi-C methods have expanded our understanding of chromatin interactions, but their high cost and complexity limit their use. Existing models for predicting chromatin interactions rely on limited ChIP-seq inputs, reducing their accuracy and generalizability. In this work, we present a computational approach, EpiVerse, which leverages imputed epigenetic signals and advanced deep learning techniques. EpiVerse significantly improves the accuracy of cross-cell-type Hi-C prediction, while also enhancing model interpretability by incorporating chromatin state prediction within a multitask learning framework. Moreover, EpiVerse predicts Hi-C contact maps across an array of 39 human tissues, which provides a comprehensive view of the complex relationship between chromatin structure and gene regulation. Furthermore, EpiVerse facilitates unprecedented in silico perturbation experiments at the “epigenome-level” to unveil the chromatin architecture under specific conditions. EpiVerse is available on GitHub: https://github.com/jhhung/EpiVerse.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用虚拟表观基因组揭示染色质动力学
染色质的三维组织对基因调控和细胞功能至关重要,其中表观基因组起着关键作用。Hi-C方法扩大了我们对染色质相互作用的理解,但它们的高成本和复杂性限制了它们的使用。预测染色质相互作用的现有模型依赖于有限的ChIP-seq输入,降低了它们的准确性和通用性。在这项工作中,我们提出了一种计算方法EpiVerse,它利用了输入的表观遗传信号和先进的深度学习技术。EpiVerse显著提高了跨细胞型Hi-C预测的准确性,同时通过在多任务学习框架中结合染色质状态预测,增强了模型的可解释性。此外,EpiVerse预测了39种人体组织的Hi-C接触图谱,这为染色质结构和基因调控之间的复杂关系提供了一个全面的视角。此外,EpiVerse促进了前所未有的“表观基因组水平”的硅微扰实验,以揭示特定条件下的染色质结构。EpiVerse可以在GitHub上获得:https://github.com/jhhung/EpiVerse。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Deterministic and highly indistinguishable single photons in the telecom C-band Chronically implantable μLED arrays for optogenetic cortical surface stimulation in mice Feedback-induced attitudinal changes in risk preferences Aged skin exacerbates experimental osteoarthritis via enhanced IL-36R signaling Towards high resolution, validated and open global wind power assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1