Synergistic Conversion of Hydrogen Peroxide and Benzaldehyde in Air by Silver Single-Atom Modified Thiophene-Functionalized g-C3N4

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-04-11 DOI:10.1002/anie.202505532
Xiaoyu Zhou, Kuanhong Cao, Shouqiang Huang, Haonan Wu, Zhen Cao, Hang Liu, Peng Chen, Dawei Su, Guoxiu Wang, Tianyi Wang, Chengyin Wang, Huan Pang
{"title":"Synergistic Conversion of Hydrogen Peroxide and Benzaldehyde in Air by Silver Single-Atom Modified Thiophene-Functionalized g-C3N4","authors":"Xiaoyu Zhou,&nbsp;Kuanhong Cao,&nbsp;Shouqiang Huang,&nbsp;Haonan Wu,&nbsp;Zhen Cao,&nbsp;Hang Liu,&nbsp;Peng Chen,&nbsp;Dawei Su,&nbsp;Guoxiu Wang,&nbsp;Tianyi Wang,&nbsp;Chengyin Wang,&nbsp;Huan Pang","doi":"10.1002/anie.202505532","DOIUrl":null,"url":null,"abstract":"<p>This study reports the synthesis of silver single-atom-loaded thiophene-conjugated carbon nitride (Ag@T─C<sub>3</sub>N<sub>4</sub>), a material with high carrier concentration and efficient carrier separation. Under visible light, Ag@T─C<sub>3</sub>N<sub>4</sub> catalyzes hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) production and benzyl alcohol oxidation to benzaldehyde, achieving production rates of 4729.82 µmol·g<sup>−1</sup>·h<sup>−1</sup> for H<sub>2</sub>O<sub>2</sub> and 19.71 mmol·g<sup>−1</sup>·h<sup>−1</sup> for benzaldehyde. The synergy between thiophene conjugation and silver atoms extends visible light absorption and accelerates the 2-electron oxygen reduction reaction (ORR), enhancing H<sub>2</sub>O<sub>2</sub> yield. Photogenerated holes oxidize benzyl alcohol to benzaldehyde, while the biphasic benzaldehyde-water system enables spontaneous product separation. In situ Raman spectroscopy, rotating disk electrode testing, EPR, GC-MS, and DFT calculations highlight the critical role of thiophene-silver synergy in optimizing reaction pathways, enhancing catalyst-intermediate interactions, and reducing Gibbs free energy, improving H<sub>2</sub>O<sub>2</sub> and benzaldehyde synthesis. This study provides new insights for designing carbon nitride-based photocatalysts and offers a strategy for co-producing value-added chemicals.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 25","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202505532","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study reports the synthesis of silver single-atom-loaded thiophene-conjugated carbon nitride (Ag@T─C3N4), a material with high carrier concentration and efficient carrier separation. Under visible light, Ag@T─C3N4 catalyzes hydrogen peroxide (H2O2) production and benzyl alcohol oxidation to benzaldehyde, achieving production rates of 4729.82 µmol·g−1·h−1 for H2O2 and 19.71 mmol·g−1·h−1 for benzaldehyde. The synergy between thiophene conjugation and silver atoms extends visible light absorption and accelerates the 2-electron oxygen reduction reaction (ORR), enhancing H2O2 yield. Photogenerated holes oxidize benzyl alcohol to benzaldehyde, while the biphasic benzaldehyde-water system enables spontaneous product separation. In situ Raman spectroscopy, rotating disk electrode testing, EPR, GC-MS, and DFT calculations highlight the critical role of thiophene-silver synergy in optimizing reaction pathways, enhancing catalyst-intermediate interactions, and reducing Gibbs free energy, improving H2O2 and benzaldehyde synthesis. This study provides new insights for designing carbon nitride-based photocatalysts and offers a strategy for co-producing value-added chemicals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
银单原子修饰噻吩功能化g - C3N4在空气中对过氧化氢和苯甲醛的协同转化
本研究报道了银单原子负载噻吩共轭氮化碳(Ag@T‐C3N4)的合成,这是一种载子浓度高、载子分离效率高的材料。在可见光下,Ag@T‐C3N4催化过氧化氢(H2O2)生成和苯甲醇氧化生成苯甲醛,H2O2的产率为4729.82µmol·g‐1·h‐1,苯甲醛的产率为19.71 mmol·g‐1·h‐1。噻吩缀合物和银原子之间的协同作用扩大了可见光吸收,加速了2电子氧还原反应(ORR),提高了H2O2的产率。光生成的孔将苯甲醇氧化为苯甲醛,而苯甲醛-水双相体系使产物自发分离。原位拉曼光谱、旋转圆盘电极测试、EPR、GC - MS和DFT计算强调了噻吩-银协同作用在优化反应途径、增强催化剂-中间体相互作用、降低吉布斯自由能、改善H2O2和苯甲醛合成方面的关键作用。该研究为氮化碳基光催化剂的设计提供了新的见解,并为共同生产增值化学品提供了策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Dibenzazepine Bridged Network Polymeric Phthalocyanines as Degradable Heterogeneous Photocatalysts. Single-atom Electronic Bridge Facilitates Cascade Electron Transfer From Encapsulated Polyoxometalate to Metal-Organic Framework for Efficient Photocatalytic CO2 Conversion. Unit Symmetry-Breaking and Layered Linear Ordering Enabling Superior Short-Wave Ultraviolet Birefringent Crystal. Modulating Transient Solvation for Ultrahigh-Rate Sodium Metal Batteries. Water-Resistant Defective iMOFs via Halogen Coordination for CO2 Capture and Size-Selective Cycloaddition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1