Exceptional point and hysteresis trajectories in cold Rydberg atomic gases

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-04-13 DOI:10.1038/s41467-025-58850-y
Jun Zhang, En-Ze Li, Ya-Jun Wang, Bang Liu, Li-Hua Zhang, Zheng-Yuan Zhang, Shi-Yao Shao, Qing Li, Han-Chao Chen, Yu Ma, Tian-Yu Han, Qi-Feng Wang, Jia-Dou Nan, Yi-Ming Yin, Dong-Yang Zhu, Guang-Can Guo, Dong-Sheng Ding, Bao-Sen Shi
{"title":"Exceptional point and hysteresis trajectories in cold Rydberg atomic gases","authors":"Jun Zhang, En-Ze Li, Ya-Jun Wang, Bang Liu, Li-Hua Zhang, Zheng-Yuan Zhang, Shi-Yao Shao, Qing Li, Han-Chao Chen, Yu Ma, Tian-Yu Han, Qi-Feng Wang, Jia-Dou Nan, Yi-Ming Yin, Dong-Yang Zhu, Guang-Can Guo, Dong-Sheng Ding, Bao-Sen Shi","doi":"10.1038/s41467-025-58850-y","DOIUrl":null,"url":null,"abstract":"<p>The interplay between strong long-range interactions and the coherent driving contribute to the formation of complex patterns, symmetry, and novel phases of matter in many-body systems. However, long-range interactions may induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics and the emergence of exceptional points in spectrum. Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases, revealing the breaking of charge-conjugation parity symmetry. By measuring the transmission spectrum under increasing and decreasing probe intensity, the interaction-induced hysteresis trajectories are observed, which give rise to non-Hermitian dynamics. We record the area enclosed by hysteresis loops and investigate the dynamics of hysteresis loops. The reported exceptional points and hysteresis trajectories in cold Rydberg atomic gases provide valuable insights into the underlying non-Hermitian physics in many-body systems, allowing us to study the interplay between long-range interactions and non-Hermiticity.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"183 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58850-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The interplay between strong long-range interactions and the coherent driving contribute to the formation of complex patterns, symmetry, and novel phases of matter in many-body systems. However, long-range interactions may induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics and the emergence of exceptional points in spectrum. Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases, revealing the breaking of charge-conjugation parity symmetry. By measuring the transmission spectrum under increasing and decreasing probe intensity, the interaction-induced hysteresis trajectories are observed, which give rise to non-Hermitian dynamics. We record the area enclosed by hysteresis loops and investigate the dynamics of hysteresis loops. The reported exceptional points and hysteresis trajectories in cold Rydberg atomic gases provide valuable insights into the underlying non-Hermitian physics in many-body systems, allowing us to study the interplay between long-range interactions and non-Hermiticity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷里德伯原子气体中的异常点和滞后轨迹
强长程相互作用和相干驱动之间的相互作用有助于多体系统中复杂模式、对称性和新物质相的形成。然而,长程相互作用可能会诱发额外的耗散通道,从而导致非赫米提多体动力学和频谱中特殊点的出现。在此,我们报告了在冷雷德贝格原子气体中对相互作用诱导的异常点的实验观测,揭示了电荷共轭奇偶对称性的破缺。通过测量探针强度增大和减小情况下的透射光谱,我们观察到了相互作用诱发的滞后轨迹,这就产生了非赫米提动力学。我们记录了磁滞环所包围的区域,并研究了磁滞环的动力学。所报告的冷雷德贝格原子气体中的例外点和滞后轨迹为多体系统中潜在的非ermitian 物理提供了宝贵的见解,使我们能够研究长程相互作用和非ermitian 之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Deterministic and highly indistinguishable single photons in the telecom C-band Chronically implantable μLED arrays for optogenetic cortical surface stimulation in mice Feedback-induced attitudinal changes in risk preferences Aged skin exacerbates experimental osteoarthritis via enhanced IL-36R signaling Towards high resolution, validated and open global wind power assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1