Influence of Mn Precursor Adjustments on the Structural and Electrochemical Behavior of P2-Type Na0.65Ni0.25Mn0.75O2 Cathodes for Sodium-Ion Batteries

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-03-27 DOI:10.1021/acsaem.5c00294
M. Varun Karthik, L. N. Patro, J. Arout Chelvane and K. Kamala Bharathi*, 
{"title":"Influence of Mn Precursor Adjustments on the Structural and Electrochemical Behavior of P2-Type Na0.65Ni0.25Mn0.75O2 Cathodes for Sodium-Ion Batteries","authors":"M. Varun Karthik,&nbsp;L. N. Patro,&nbsp;J. Arout Chelvane and K. Kamala Bharathi*,&nbsp;","doi":"10.1021/acsaem.5c00294","DOIUrl":null,"url":null,"abstract":"<p >Sodium-ion batteries (SIBs) are game-changing in large-scale energy storage technology compared to lithium-ion batteries (LIBs) due to abundant reserves, safety, and cost-effectiveness. However, serious issues in Mn-based P2-type cathodes, such as phase transitions, the Jahn–Teller effect, and Mn dissolution, hinder the success of SIBs. Herein, we report that altering the manganese oxide precursors in the solid-state synthesis of P2-type Na<sub>0.65</sub>Ni<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2</sub> (NNMO) leads to structural variations and improvements in electrochemical properties. X-ray diffraction with refined data confirms that all samples are in the P2-type phase, with changes in lattice parameters and cell volume. Raman spectroscopy and electron spin resonance verify the presence of oxygen defects in the P2-type NNMO materials. Furthermore, X-ray photoelectron spectroscopy analysis of the Mn<sub>2</sub>O<sub>3</sub> precursor-used Na<sub>0.65</sub>Ni<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2</sub> (NNMO-2) sample reveals slightly higher Mn<sup>4+</sup> and lower Mn<sup>3+</sup> mixed valence states compared to other samples. The potential profile and d<i>Q</i>/d<i>V</i> plot of NNMO-2 exhibit solid-solution behavior, delivering an initial discharge capacity of 151 mAh/g and 152 mAh/g at 0.1 C. The sample demonstrates excellent capacity retention of 85.34% and 77.28% after 100 cycles at a 1 C rate, with a Coulombic efficiency exceeding 98% in both tested voltage ranges (1.5–4.0 V and 2.0–4.3 V), attributed to Mn charge compensation. Moreover, the Na-ion diffusion coefficient, estimated to be around 10<sup>–10</sup> cm<sup>2</sup>/s using the galvanostatic intermittent titration technique and the reduced charge transfer resistance, confirmed by impedance measurements, further highlight the electrochemical benefits of the NNMO-2 sample. Overall, the results suggest that the Mn<sub>2</sub>O<sub>3</sub> precursor can be a suitable raw material for solid-state reactions synthesizing P2-type Na<sub>0.65</sub>Ni<sub>0.25</sub>Mn<sub>0.75</sub>O<sub>2</sub> cathode materials for sodium-ion battery applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4669–4680 4669–4680"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00294","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) are game-changing in large-scale energy storage technology compared to lithium-ion batteries (LIBs) due to abundant reserves, safety, and cost-effectiveness. However, serious issues in Mn-based P2-type cathodes, such as phase transitions, the Jahn–Teller effect, and Mn dissolution, hinder the success of SIBs. Herein, we report that altering the manganese oxide precursors in the solid-state synthesis of P2-type Na0.65Ni0.25Mn0.75O2 (NNMO) leads to structural variations and improvements in electrochemical properties. X-ray diffraction with refined data confirms that all samples are in the P2-type phase, with changes in lattice parameters and cell volume. Raman spectroscopy and electron spin resonance verify the presence of oxygen defects in the P2-type NNMO materials. Furthermore, X-ray photoelectron spectroscopy analysis of the Mn2O3 precursor-used Na0.65Ni0.25Mn0.75O2 (NNMO-2) sample reveals slightly higher Mn4+ and lower Mn3+ mixed valence states compared to other samples. The potential profile and dQ/dV plot of NNMO-2 exhibit solid-solution behavior, delivering an initial discharge capacity of 151 mAh/g and 152 mAh/g at 0.1 C. The sample demonstrates excellent capacity retention of 85.34% and 77.28% after 100 cycles at a 1 C rate, with a Coulombic efficiency exceeding 98% in both tested voltage ranges (1.5–4.0 V and 2.0–4.3 V), attributed to Mn charge compensation. Moreover, the Na-ion diffusion coefficient, estimated to be around 10–10 cm2/s using the galvanostatic intermittent titration technique and the reduced charge transfer resistance, confirmed by impedance measurements, further highlight the electrochemical benefits of the NNMO-2 sample. Overall, the results suggest that the Mn2O3 precursor can be a suitable raw material for solid-state reactions synthesizing P2-type Na0.65Ni0.25Mn0.75O2 cathode materials for sodium-ion battery applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mn前驱体调整对钠离子电池用p2型Na0.65Ni0.25Mn0.75O2阴极结构和电化学行为的影响
与锂离子电池(LIBs)相比,钠离子电池(SIBs)由于储量丰富、安全性高、成本效益高,在大规模储能技术中改变了游戏规则。然而,Mn基p2型阴极中存在的一些严重问题,如相变、Jahn-Teller效应和Mn溶解,阻碍了sib的成功。本文报道了在固态合成p2型Na0.65Ni0.25Mn0.75O2 (NNMO)的过程中,改变锰氧化物前驱体可以导致结构变化和电化学性能的改善。经过精细化数据的x射线衍射证实,所有样品均为p2型相,晶格参数和细胞体积都发生了变化。拉曼光谱和电子自旋共振验证了p2型NNMO材料中存在氧缺陷。此外,使用Mn2O3前驱体的Na0.65Ni0.25Mn0.75O2 (NNMO-2)样品的x射线光电子能谱分析显示,与其他样品相比,Mn4+的混合价态略高,Mn3+的混合价态略低。NNMO-2的电位曲线和dQ/dV曲线表现出固溶行为,在0.1℃下,NNMO-2的初始放电容量分别为151 mAh/g和152 mAh/g。在1℃下,样品在100次循环后的容量保持率分别为85.34%和77.28%,由于Mn电荷补偿,在1.5-4.0 V和2.0-4.3 V的测试电压范围内,库仑效率均超过98%。此外,利用恒流间歇滴定技术估计na离子扩散系数约为10-10 cm2/s,并通过阻抗测量证实了电荷转移电阻的降低,进一步突出了NNMO-2样品的电化学优势。综上所述,Mn2O3前驱体可以作为固态反应合成用于钠离子电池的p2型Na0.65Ni0.25Mn0.75O2正极材料的合适原料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Topical Collection: Solid-State Electrolytes for Rechargeable Batteries A Facile Aqueous-Processed MoO3 Buffer Layer for Efficient and Stable Organic Solar Cells Enabling Stable High-Voltage LiNi0.5Mn1.5O4 Operation with 1,3,6-Hexanetricarbonitrile as an Electrolyte Additive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1