Enhanced Fast-Charging Capability in Spinel LiMn2O4 via K+ Ion Stabilization for Advanced Lithium-Ion Batteries

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-03-17 DOI:10.1021/acsaem.4c03306
Shiqiang Zhong, Jingwei Liu, Yongcong Huang, Yulin Cao, Feng Wu, Xuhui Li, Dawei Luo*, Zhouguang Lu* and Hua Cheng*, 
{"title":"Enhanced Fast-Charging Capability in Spinel LiMn2O4 via K+ Ion Stabilization for Advanced Lithium-Ion Batteries","authors":"Shiqiang Zhong,&nbsp;Jingwei Liu,&nbsp;Yongcong Huang,&nbsp;Yulin Cao,&nbsp;Feng Wu,&nbsp;Xuhui Li,&nbsp;Dawei Luo*,&nbsp;Zhouguang Lu* and Hua Cheng*,&nbsp;","doi":"10.1021/acsaem.4c03306","DOIUrl":null,"url":null,"abstract":"<p >Spinel LiMn<sub>2</sub>O<sub>4</sub> (LMO) is a promising fast-charging cathode material because its unique three-dimensional Li-ion diffusion channels offer favorable ionic diffusivity. However, LMO encounters rapid structural degradation at high current densities. To tackle this issue, we introduce K<sup>+</sup> ions into the interstitial 16c sites to stabilize LMO, thereby achieving excellent fast-charging capability. The K-LMO retains 75% of its theoretical capacity at an ultrahigh current density of 1.48 A g<sup>–1</sup> (10 C, corresponding to a charging time of 5 min). Comprehensive characterizations demonstrate that the incorporation of K<sup>+</sup> into LMO expands the LiO<sub>4</sub> space, strengthens the Mn–O bonds and suppresses the Jahn–Teller effect, leading to improved Li-ion mobility and enhanced stability of the diffusion channels. Additionally, the volume variation induced by cycling under a high charge state is efficiently suppressed through a solid-solution transition, thus preventing structural degradation against long-term cycling. Given this, this study presents an attractive candidate material for the cathode of fast-charging lithium-ion batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4395–4403 4395–4403"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03306","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spinel LiMn2O4 (LMO) is a promising fast-charging cathode material because its unique three-dimensional Li-ion diffusion channels offer favorable ionic diffusivity. However, LMO encounters rapid structural degradation at high current densities. To tackle this issue, we introduce K+ ions into the interstitial 16c sites to stabilize LMO, thereby achieving excellent fast-charging capability. The K-LMO retains 75% of its theoretical capacity at an ultrahigh current density of 1.48 A g–1 (10 C, corresponding to a charging time of 5 min). Comprehensive characterizations demonstrate that the incorporation of K+ into LMO expands the LiO4 space, strengthens the Mn–O bonds and suppresses the Jahn–Teller effect, leading to improved Li-ion mobility and enhanced stability of the diffusion channels. Additionally, the volume variation induced by cycling under a high charge state is efficiently suppressed through a solid-solution transition, thus preventing structural degradation against long-term cycling. Given this, this study presents an attractive candidate material for the cathode of fast-charging lithium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用K+离子稳定技术增强尖晶石LiMn2O4的快速充电性能
尖晶石LiMn2O4 (LMO)由于其独特的三维锂离子扩散通道提供了良好的离子扩散率,是一种很有前途的快速充电正极材料。然而,在高电流密度下,LMO会遇到快速的结构退化。为了解决这一问题,我们将K+离子引入间隙的16c位点以稳定LMO,从而获得出色的快速充电能力。K-LMO在1.48 A g-1(10℃,充电时间为5分钟)的超高电流密度下保持了75%的理论容量。综合表征表明,K+加入LMO扩展了LiO4空间,增强了Mn-O键,抑制了Jahn-Teller效应,从而提高了li离子的迁移率,增强了扩散通道的稳定性。此外,在高电荷状态下由循环引起的体积变化通过固溶转变有效地抑制,从而防止长期循环导致的结构降解。鉴于此,本研究为快速充电锂离子电池的阴极提供了一种有吸引力的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Misinformation in the media: global coverage of GMOs 2019-2021. Understanding Catalyst Design of High-Entropic Non-Noble Metal Alloys for the Oxygen Evolution Reaction in Acidic Media Recent Progress in the Design of Functional Carbon Materials for Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1