Leveraging C2H4N3+CH3SO3– Ionic Liquid-Embedded MOF-808 and Biobased Vitamin E for Enhanced Performance and Oxidative Tolerance in Zero-Humidified PEMFCs

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-03-24 DOI:10.1021/acsaem.4c02795
Madhuparna Ray, Sunil K. Sethy, Nasir Ali, Amit C. Bhosale, Yuvraj Singh Negi and Sujay Chattopadhyay*, 
{"title":"Leveraging C2H4N3+CH3SO3– Ionic Liquid-Embedded MOF-808 and Biobased Vitamin E for Enhanced Performance and Oxidative Tolerance in Zero-Humidified PEMFCs","authors":"Madhuparna Ray,&nbsp;Sunil K. Sethy,&nbsp;Nasir Ali,&nbsp;Amit C. Bhosale,&nbsp;Yuvraj Singh Negi and Sujay Chattopadhyay*,&nbsp;","doi":"10.1021/acsaem.4c02795","DOIUrl":null,"url":null,"abstract":"<p >Integration of diverse functional materials offers a multifaceted approach to tackle the challenges of developing highly conductive, durable, and cost-effective membrane electrolytes for energy applications. A simple, low cost protic ionic liquid (PIL) “triazolium methanesulfonate” (C<sub>2</sub>H<sub>4</sub>N<sub>3</sub><sup>+</sup>CH<sub>3</sub>SO<sub>3</sub><sup>–</sup>) was entrapped into the pores of zirconium-based metal–organic framework (MOF), MOF 808 (Zr<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub>(BTC)<sub>2</sub>(HCOO)<sub>5</sub>(H2O)<sub>1</sub>(OH)<sub>1</sub>) to develop a hybrid proton conductor (TrzIL@M). This generated a new class of material that can harness the intrinsic properties of rigid host-soft guest, resulting in synergistic interplay that forms ordered, long-range ion conducting ducts and prevents PIL leaching when incorporated in a polymer matrix. Further, electrolytes are susceptible to degradation by reactive oxygen species. To combat this, we drew inspiration from biological systems and utilized the renewable antioxidant vitamin E (α-tocopherol) as a potent radical scavenger. Finally, a mixed matrix membrane electrolyte was developed by incorporating TrzIL@M and vitamin E into a SPEEK matrix. The resulting membrane (SP/TrzIL@ME) exhibited a high conductivity of 0.035 S/cm at 100 °C ∼2.7 times upsurge in comparison to pristine SPEEK membrane, while PIL loss was reduced by 18%. SP/TrzIL@ME achieved maximum current density of 1327 mA/cm<sup>2</sup> and peak power density 245 mW/cm<sup>2</sup> in zero-humidified conditions. SP/TrzIL@ME operated effectively in nonhumidified state mitigating flooding, swelling, and dimensional distortion associated with humidity-dependent membranes. Notably, the membrane could retain 91% of open-circuit voltage after five cycles (50 h) durability testing attributed to the scavenging activity and recyclability of vitamin E, establishing the PEM as a potential candidate for proton exchange membrane fuel cells.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4242–4256 4242–4256"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02795","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integration of diverse functional materials offers a multifaceted approach to tackle the challenges of developing highly conductive, durable, and cost-effective membrane electrolytes for energy applications. A simple, low cost protic ionic liquid (PIL) “triazolium methanesulfonate” (C2H4N3+CH3SO3) was entrapped into the pores of zirconium-based metal–organic framework (MOF), MOF 808 (Zr6O4(OH)4(BTC)2(HCOO)5(H2O)1(OH)1) to develop a hybrid proton conductor (TrzIL@M). This generated a new class of material that can harness the intrinsic properties of rigid host-soft guest, resulting in synergistic interplay that forms ordered, long-range ion conducting ducts and prevents PIL leaching when incorporated in a polymer matrix. Further, electrolytes are susceptible to degradation by reactive oxygen species. To combat this, we drew inspiration from biological systems and utilized the renewable antioxidant vitamin E (α-tocopherol) as a potent radical scavenger. Finally, a mixed matrix membrane electrolyte was developed by incorporating TrzIL@M and vitamin E into a SPEEK matrix. The resulting membrane (SP/TrzIL@ME) exhibited a high conductivity of 0.035 S/cm at 100 °C ∼2.7 times upsurge in comparison to pristine SPEEK membrane, while PIL loss was reduced by 18%. SP/TrzIL@ME achieved maximum current density of 1327 mA/cm2 and peak power density 245 mW/cm2 in zero-humidified conditions. SP/TrzIL@ME operated effectively in nonhumidified state mitigating flooding, swelling, and dimensional distortion associated with humidity-dependent membranes. Notably, the membrane could retain 91% of open-circuit voltage after five cycles (50 h) durability testing attributed to the scavenging activity and recyclability of vitamin E, establishing the PEM as a potential candidate for proton exchange membrane fuel cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用C2H4N3+CH3SO3 -离子液体包埋MOF-808和生物基维生素E增强零加湿pemfc的性能和氧化耐受性
多种功能材料的集成提供了一种多方面的方法来解决开发高导电性、耐用性和成本效益高的能源应用膜电解质的挑战。将一种简单、低成本的质子离子液体(PIL)“三唑甲磺酸盐”(C2H4N3+CH3SO3 -)包埋在锆基金属有机骨架(MOF) MOF 808 (Zr6O4(OH)4(BTC)2(HCOO)5(H2O)1(OH)1)的孔隙中,制备了一种杂化质子导体(TrzIL@M)。这产生了一种新型材料,可以利用刚性主-软客体的固有特性,产生协同相互作用,形成有序的远程离子传导管道,并防止PIL在掺入聚合物基质时浸出。此外,电解质容易被活性氧降解。为了解决这个问题,我们从生物系统中汲取灵感,利用可再生抗氧化剂维生素E (α-生育酚)作为一种有效的自由基清除剂。最后,通过将TrzIL@M和维生素E掺入SPEEK基质中,制备了混合基质膜电解质。所得膜(SP/TrzIL@ME)在100°C时的电导率为0.035 S/cm,是原始SPEEK膜的2.7倍,而PIL损耗降低了18%。SP/TrzIL@ME在零加湿条件下实现了1327 mA/cm2的最大电流密度和245 mW/cm2的峰值功率密度。SP/TrzIL@ME在无湿状态下有效运行,减轻了与湿度依赖膜相关的水浸、膨胀和尺寸扭曲。值得注意的是,由于维生素E的清除活性和可回收性,在经过5次循环(50小时)耐久性测试后,该膜可以保持91%的开路电压,这表明PEM是质子交换膜燃料电池的潜在候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Misinformation in the media: global coverage of GMOs 2019-2021. Understanding Catalyst Design of High-Entropic Non-Noble Metal Alloys for the Oxygen Evolution Reaction in Acidic Media Recent Progress in the Design of Functional Carbon Materials for Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1