In Situ Growing Te-Doped Ni–Mn Layered Double Hydroxide on a Cetyltrimethylammonium Bromide-Modified MXene Conductive Layer for Binder-Free Supercapacitors

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-03-25 DOI:10.1021/acsaem.4c02840
Po-Yen Tai, Mani Sakthivel, Yi-Jen Peng, Subbiramaniyan Kubendhiran, Lu-Yin Lin* and Kuo-Chuan Ho*, 
{"title":"In Situ Growing Te-Doped Ni–Mn Layered Double Hydroxide on a Cetyltrimethylammonium Bromide-Modified MXene Conductive Layer for Binder-Free Supercapacitors","authors":"Po-Yen Tai,&nbsp;Mani Sakthivel,&nbsp;Yi-Jen Peng,&nbsp;Subbiramaniyan Kubendhiran,&nbsp;Lu-Yin Lin* and Kuo-Chuan Ho*,&nbsp;","doi":"10.1021/acsaem.4c02840","DOIUrl":null,"url":null,"abstract":"<p >Tellurium-doped nickel manganese layered double hydroxide (Te-NiMn LDH) is synthesized, featuring direct growth on a cetyltrimethylammonium bromide (CTAB)-modified MXene layer (C-MXene) anchored to an ultraviolet-ozone-treated nickel foam (Te-NiMn LDH/C-MXene/NF). This innovative material serves as a high-performance active material in supercapacitors. The modification of MXene using a CTAB-containing ethanol solution leads to increased interlayer spacing, which facilitates ion transport and enhances electrical conductivity. The C-MXene layer on a nickel foam provides an effective conductive substrate that supports the growth of LDH and the incorporation of tellurium and hence eliminates the need for binders or additives. This not only reduces fabrication costs but also minimizes internal resistance. Tellurium doping can increase the electron density within the LDH structure and enhance the valence states and therefore its capacitance. The binder-free Te-NiMn LDH/C-MXene/NF electrode demonstrates a high specific capacitance of 1920 F/g at 2 A/g. Furthermore, the hybrid supercapacitor composed of Te-NiMn LDH/C-MXene/NF and activated carbon electrodes achieves a specific capacitance of 202.6 F/g, maximum energy density of 52.3 Wh/kg, and maximum power density of 6452 W/kg. The excellent cycling stability with a capacitance retention of 77.3% after 10,000 cycles is also obtained for this device.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4122–4133 4122–4133"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02840","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02840","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tellurium-doped nickel manganese layered double hydroxide (Te-NiMn LDH) is synthesized, featuring direct growth on a cetyltrimethylammonium bromide (CTAB)-modified MXene layer (C-MXene) anchored to an ultraviolet-ozone-treated nickel foam (Te-NiMn LDH/C-MXene/NF). This innovative material serves as a high-performance active material in supercapacitors. The modification of MXene using a CTAB-containing ethanol solution leads to increased interlayer spacing, which facilitates ion transport and enhances electrical conductivity. The C-MXene layer on a nickel foam provides an effective conductive substrate that supports the growth of LDH and the incorporation of tellurium and hence eliminates the need for binders or additives. This not only reduces fabrication costs but also minimizes internal resistance. Tellurium doping can increase the electron density within the LDH structure and enhance the valence states and therefore its capacitance. The binder-free Te-NiMn LDH/C-MXene/NF electrode demonstrates a high specific capacitance of 1920 F/g at 2 A/g. Furthermore, the hybrid supercapacitor composed of Te-NiMn LDH/C-MXene/NF and activated carbon electrodes achieves a specific capacitance of 202.6 F/g, maximum energy density of 52.3 Wh/kg, and maximum power density of 6452 W/kg. The excellent cycling stability with a capacitance retention of 77.3% after 10,000 cycles is also obtained for this device.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在十六烷基三甲基溴化铵修饰MXene导电层上原位生长te掺杂Ni-Mn层状双氢氧化物用于无粘结剂超级电容器
合成了碲掺杂镍锰层状双氢氧化物(Te-NiMn LDH),其直接生长在十六烷基三甲基溴化铵(CTAB)修饰的MXene层(C-MXene)上,该层固定在紫外线臭氧处理的泡沫镍(Te-NiMn LDH/C-MXene/NF)上。这种创新材料可作为超级电容器的高性能活性材料。使用含ctab的乙醇溶液对MXene进行改性,可以增加层间间距,从而促进离子传输并提高导电性。泡沫镍上的C-MXene层提供了有效的导电基底,支持LDH的生长和碲的掺入,因此不需要粘合剂或添加剂。这不仅降低了制造成本,而且最大限度地减少了内阻。碲的掺杂可以增加LDH结构内的电子密度,提高价态,从而提高其电容。无粘结剂Te-NiMn LDH/C-MXene/NF电极在2 a /g下具有1920 F/g的高比电容。此外,由Te-NiMn LDH/C-MXene/NF和活性炭电极组成的混合超级电容器的比电容为202.6 F/g,最大能量密度为52.3 Wh/kg,最大功率密度为6452 W/kg。该器件具有良好的循环稳定性,在10,000次循环后电容保持率为77.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Misinformation in the media: global coverage of GMOs 2019-2021. Understanding Catalyst Design of High-Entropic Non-Noble Metal Alloys for the Oxygen Evolution Reaction in Acidic Media Recent Progress in the Design of Functional Carbon Materials for Energy Storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1